774 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			774 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
|  | import NodeMaterial from '../../../nodes/materials/NodeMaterial.js'; | ||
|  | import { getDirection, blur } from '../../../nodes/pmrem/PMREMUtils.js'; | ||
|  | import { equirectUV } from '../../../nodes/utils/EquirectUVNode.js'; | ||
|  | import { uniform } from '../../../nodes/core/UniformNode.js'; | ||
|  | import { uniforms } from '../../../nodes/accessors/UniformsNode.js'; | ||
|  | import { texture } from '../../../nodes/accessors/TextureNode.js'; | ||
|  | import { cubeTexture } from '../../../nodes/accessors/CubeTextureNode.js'; | ||
|  | import { float, vec3 } from '../../../nodes/shadernode/ShaderNode.js'; | ||
|  | import { uv } from '../../../nodes/accessors/UVNode.js'; | ||
|  | import { attribute } from '../../../nodes/core/AttributeNode.js'; | ||
|  | import { | ||
|  | 	OrthographicCamera, | ||
|  | 	Color, | ||
|  | 	Vector3, | ||
|  | 	BufferGeometry, | ||
|  | 	BufferAttribute, | ||
|  | 	RenderTarget, | ||
|  | 	Mesh, | ||
|  | 	CubeReflectionMapping, | ||
|  | 	CubeRefractionMapping, | ||
|  | 	CubeUVReflectionMapping, | ||
|  | 	LinearFilter, | ||
|  | 	NoBlending, | ||
|  | 	RGBAFormat, | ||
|  | 	HalfFloatType, | ||
|  | 	BackSide, | ||
|  | 	LinearSRGBColorSpace, | ||
|  | 	PerspectiveCamera, | ||
|  | 	MeshBasicMaterial, | ||
|  | 	BoxGeometry | ||
|  | } from 'three'; | ||
|  | 
 | ||
|  | const LOD_MIN = 4; | ||
|  | 
 | ||
|  | // The standard deviations (radians) associated with the extra mips. These are
 | ||
|  | // chosen to approximate a Trowbridge-Reitz distribution function times the
 | ||
|  | // geometric shadowing function. These sigma values squared must match the
 | ||
|  | // variance #defines in cube_uv_reflection_fragment.glsl.js.
 | ||
|  | const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; | ||
|  | 
 | ||
|  | // The maximum length of the blur for loop. Smaller sigmas will use fewer
 | ||
|  | // samples and exit early, but not recompile the shader.
 | ||
|  | const MAX_SAMPLES = 20; | ||
|  | 
 | ||
|  | const _flatCamera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); | ||
|  | const _cubeCamera = /*@__PURE__*/ new PerspectiveCamera( 90, 1 ); | ||
|  | const _clearColor = /*@__PURE__*/ new Color(); | ||
|  | let _oldTarget = null; | ||
|  | let _oldActiveCubeFace = 0; | ||
|  | let _oldActiveMipmapLevel = 0; | ||
|  | 
 | ||
|  | // Golden Ratio
 | ||
|  | const PHI = ( 1 + Math.sqrt( 5 ) ) / 2; | ||
|  | const INV_PHI = 1 / PHI; | ||
|  | 
 | ||
|  | // Vertices of a dodecahedron (except the opposites, which represent the
 | ||
|  | // same axis), used as axis directions evenly spread on a sphere.
 | ||
|  | const _axisDirections = [ | ||
|  | 	/*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ), | ||
|  | 	/*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ), | ||
|  | 	/*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ), | ||
|  | 	/*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ), | ||
|  | 	/*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ), | ||
|  | 	/*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ), | ||
|  | 	/*@__PURE__*/ new Vector3( - 1, 1, - 1 ), | ||
|  | 	/*@__PURE__*/ new Vector3( 1, 1, - 1 ), | ||
|  | 	/*@__PURE__*/ new Vector3( - 1, 1, 1 ), | ||
|  | 	/*@__PURE__*/ new Vector3( 1, 1, 1 ) | ||
|  | ]; | ||
|  | 
 | ||
|  | //
 | ||
|  | 
 | ||
|  | // WebGPU Face indices
 | ||
|  | const _faceLib = [ | ||
|  | 	3, 1, 5, | ||
|  | 	0, 4, 2 | ||
|  | ]; | ||
|  | 
 | ||
|  | const direction = getDirection( uv(), attribute( 'faceIndex' ) ).normalize(); | ||
|  | const outputDirection = vec3( direction.x, direction.y.negate(), direction.z ); | ||
|  | 
 | ||
|  | /** | ||
|  |  * This class generates a Prefiltered, Mipmapped Radiance Environment Map | ||
|  |  * (PMREM) from a cubeMap environment texture. This allows different levels of | ||
|  |  * blur to be quickly accessed based on material roughness. It is packed into a | ||
|  |  * special CubeUV format that allows us to perform custom interpolation so that | ||
|  |  * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap | ||
|  |  * chain, it only goes down to the LOD_MIN level (above), and then creates extra | ||
|  |  * even more filtered 'mips' at the same LOD_MIN resolution, associated with | ||
|  |  * higher roughness levels. In this way we maintain resolution to smoothly | ||
|  |  * interpolate diffuse lighting while limiting sampling computation. | ||
|  |  * | ||
|  |  * Paper: Fast, Accurate Image-Based Lighting | ||
|  |  * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
 | ||
|  | */ | ||
|  | 
 | ||
|  | class PMREMGenerator { | ||
|  | 
 | ||
|  | 	constructor( renderer ) { | ||
|  | 
 | ||
|  | 		this._renderer = renderer; | ||
|  | 		this._pingPongRenderTarget = null; | ||
|  | 
 | ||
|  | 		this._lodMax = 0; | ||
|  | 		this._cubeSize = 0; | ||
|  | 		this._lodPlanes = []; | ||
|  | 		this._sizeLods = []; | ||
|  | 		this._sigmas = []; | ||
|  | 		this._lodMeshes = []; | ||
|  | 
 | ||
|  | 		this._blurMaterial = null; | ||
|  | 		this._cubemapMaterial = null; | ||
|  | 		this._equirectMaterial = null; | ||
|  | 		this._backgroundBox = null; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 * Generates a PMREM from a supplied Scene, which can be faster than using an | ||
|  | 	 * image if networking bandwidth is low. Optional sigma specifies a blur radius | ||
|  | 	 * in radians to be applied to the scene before PMREM generation. Optional near | ||
|  | 	 * and far planes ensure the scene is rendered in its entirety (the cubeCamera | ||
|  | 	 * is placed at the origin). | ||
|  | 	 */ | ||
|  | 	fromScene( scene, sigma = 0, near = 0.1, far = 100 ) { | ||
|  | 
 | ||
|  | 		_oldTarget = this._renderer.getRenderTarget(); | ||
|  | 		_oldActiveCubeFace = this._renderer.getActiveCubeFace(); | ||
|  | 		_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); | ||
|  | 
 | ||
|  | 		this._setSize( 256 ); | ||
|  | 
 | ||
|  | 		const cubeUVRenderTarget = this._allocateTargets(); | ||
|  | 		cubeUVRenderTarget.depthBuffer = true; | ||
|  | 
 | ||
|  | 		this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget ); | ||
|  | 
 | ||
|  | 		if ( sigma > 0 ) { | ||
|  | 
 | ||
|  | 			this._blur( cubeUVRenderTarget, 0, 0, sigma ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		this._applyPMREM( cubeUVRenderTarget ); | ||
|  | 
 | ||
|  | 		this._cleanup( cubeUVRenderTarget ); | ||
|  | 
 | ||
|  | 		return cubeUVRenderTarget; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 * Generates a PMREM from an equirectangular texture, which can be either LDR | ||
|  | 	 * or HDR. The ideal input image size is 1k (1024 x 512), | ||
|  | 	 * as this matches best with the 256 x 256 cubemap output. | ||
|  | 	 */ | ||
|  | 	fromEquirectangular( equirectangular, renderTarget = null ) { | ||
|  | 
 | ||
|  | 		return this._fromTexture( equirectangular, renderTarget ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 * Generates a PMREM from an cubemap texture, which can be either LDR | ||
|  | 	 * or HDR. The ideal input cube size is 256 x 256, | ||
|  | 	 * as this matches best with the 256 x 256 cubemap output. | ||
|  | 	 */ | ||
|  | 	fromCubemap( cubemap, renderTarget = null ) { | ||
|  | 
 | ||
|  | 		return this._fromTexture( cubemap, renderTarget ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during | ||
|  | 	 * your texture's network fetch for increased concurrency. | ||
|  | 	 */ | ||
|  | 	compileCubemapShader() { | ||
|  | 
 | ||
|  | 		if ( this._cubemapMaterial === null ) { | ||
|  | 
 | ||
|  | 			this._cubemapMaterial = _getCubemapMaterial(); | ||
|  | 			this._compileMaterial( this._cubemapMaterial ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during | ||
|  | 	 * your texture's network fetch for increased concurrency. | ||
|  | 	 */ | ||
|  | 	compileEquirectangularShader() { | ||
|  | 
 | ||
|  | 		if ( this._equirectMaterial === null ) { | ||
|  | 
 | ||
|  | 			this._equirectMaterial = _getEquirectMaterial(); | ||
|  | 			this._compileMaterial( this._equirectMaterial ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, | ||
|  | 	 * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on | ||
|  | 	 * one of them will cause any others to also become unusable. | ||
|  | 	 */ | ||
|  | 	dispose() { | ||
|  | 
 | ||
|  | 		this._dispose(); | ||
|  | 
 | ||
|  | 		if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose(); | ||
|  | 		if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose(); | ||
|  | 		if ( this._backgroundBox !== null ) { | ||
|  | 
 | ||
|  | 			this._backgroundBox.geometry.dispose(); | ||
|  | 			this._backgroundBox.material.dispose(); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// private interface
 | ||
|  | 
 | ||
|  | 	_setSize( cubeSize ) { | ||
|  | 
 | ||
|  | 		this._lodMax = Math.floor( Math.log2( cubeSize ) ); | ||
|  | 		this._cubeSize = Math.pow( 2, this._lodMax ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_dispose() { | ||
|  | 
 | ||
|  | 		if ( this._blurMaterial !== null ) this._blurMaterial.dispose(); | ||
|  | 
 | ||
|  | 		if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose(); | ||
|  | 
 | ||
|  | 		for ( let i = 0; i < this._lodPlanes.length; i ++ ) { | ||
|  | 
 | ||
|  | 			this._lodPlanes[ i ].dispose(); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_cleanup( outputTarget ) { | ||
|  | 
 | ||
|  | 		this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel ); | ||
|  | 		outputTarget.scissorTest = false; | ||
|  | 		_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_fromTexture( texture, renderTarget ) { | ||
|  | 
 | ||
|  | 		if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) { | ||
|  | 
 | ||
|  | 			this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) ); | ||
|  | 
 | ||
|  | 		} else { // Equirectangular
 | ||
|  | 
 | ||
|  | 			this._setSize( texture.image.width / 4 ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		_oldTarget = this._renderer.getRenderTarget(); | ||
|  | 		_oldActiveCubeFace = this._renderer.getActiveCubeFace(); | ||
|  | 		_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); | ||
|  | 
 | ||
|  | 		const cubeUVRenderTarget = renderTarget || this._allocateTargets(); | ||
|  | 		this._textureToCubeUV( texture, cubeUVRenderTarget ); | ||
|  | 		this._applyPMREM( cubeUVRenderTarget ); | ||
|  | 		this._cleanup( cubeUVRenderTarget ); | ||
|  | 
 | ||
|  | 		return cubeUVRenderTarget; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_allocateTargets() { | ||
|  | 
 | ||
|  | 		const width = 3 * Math.max( this._cubeSize, 16 * 7 ); | ||
|  | 		const height = 4 * this._cubeSize; | ||
|  | 
 | ||
|  | 		const params = { | ||
|  | 			magFilter: LinearFilter, | ||
|  | 			minFilter: LinearFilter, | ||
|  | 			generateMipmaps: false, | ||
|  | 			type: HalfFloatType, | ||
|  | 			format: RGBAFormat, | ||
|  | 			colorSpace: LinearSRGBColorSpace, | ||
|  | 			//depthBuffer: false
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		const cubeUVRenderTarget = _createRenderTarget( width, height, params ); | ||
|  | 
 | ||
|  | 		if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) { | ||
|  | 
 | ||
|  | 			if ( this._pingPongRenderTarget !== null ) { | ||
|  | 
 | ||
|  | 				this._dispose(); | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 			this._pingPongRenderTarget = _createRenderTarget( width, height, params ); | ||
|  | 
 | ||
|  | 			const { _lodMax } = this; | ||
|  | 			( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas, lodMeshes: this._lodMeshes } = _createPlanes( _lodMax ) ); | ||
|  | 
 | ||
|  | 			this._blurMaterial = _getBlurShader( _lodMax, width, height ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		return cubeUVRenderTarget; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_compileMaterial( material ) { | ||
|  | 
 | ||
|  | 		const tmpMesh = this._lodMeshes[ 0 ]; | ||
|  | 		tmpMesh.material = material; | ||
|  | 
 | ||
|  | 		this._renderer.compile( tmpMesh, _flatCamera ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) { | ||
|  | 
 | ||
|  | 		const cubeCamera = _cubeCamera; | ||
|  | 		cubeCamera.near = near; | ||
|  | 		cubeCamera.far = far; | ||
|  | 
 | ||
|  | 		// px, py, pz, nx, ny, nz
 | ||
|  | 		const upSign = [ - 1, 1, - 1, - 1, - 1, - 1 ]; | ||
|  | 		const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ]; | ||
|  | 
 | ||
|  | 		const renderer = this._renderer; | ||
|  | 
 | ||
|  | 		const originalAutoClear = renderer.autoClear; | ||
|  | 
 | ||
|  | 		renderer.getClearColor( _clearColor ); | ||
|  | 
 | ||
|  | 		renderer.autoClear = false; | ||
|  | 
 | ||
|  | 		let backgroundBox = this._backgroundBox; | ||
|  | 
 | ||
|  | 		if ( backgroundBox === null ) { | ||
|  | 
 | ||
|  | 			const backgroundMaterial = new MeshBasicMaterial( { | ||
|  | 				name: 'PMREM.Background', | ||
|  | 				side: BackSide, | ||
|  | 				depthWrite: false, | ||
|  | 				depthTest: false | ||
|  | 			} ); | ||
|  | 
 | ||
|  | 			backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		let useSolidColor = false; | ||
|  | 		const background = scene.background; | ||
|  | 
 | ||
|  | 		if ( background ) { | ||
|  | 
 | ||
|  | 			if ( background.isColor ) { | ||
|  | 
 | ||
|  | 				backgroundBox.material.color.copy( background ); | ||
|  | 				scene.background = null; | ||
|  | 				useSolidColor = true; | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 		} else { | ||
|  | 
 | ||
|  | 			backgroundBox.material.color.copy( _clearColor ); | ||
|  | 			useSolidColor = true; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		renderer.setRenderTarget( cubeUVRenderTarget ); | ||
|  | 
 | ||
|  | 		renderer.clear(); | ||
|  | 
 | ||
|  | 		if ( useSolidColor ) { | ||
|  | 
 | ||
|  | 			renderer.render( backgroundBox, cubeCamera ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		for ( let i = 0; i < 6; i ++ ) { | ||
|  | 
 | ||
|  | 			const col = i % 3; | ||
|  | 
 | ||
|  | 			if ( col === 0 ) { | ||
|  | 
 | ||
|  | 				cubeCamera.up.set( 0, upSign[ i ], 0 ); | ||
|  | 				cubeCamera.lookAt( forwardSign[ i ], 0, 0 ); | ||
|  | 
 | ||
|  | 			} else if ( col === 1 ) { | ||
|  | 
 | ||
|  | 				cubeCamera.up.set( 0, 0, upSign[ i ] ); | ||
|  | 				cubeCamera.lookAt( 0, forwardSign[ i ], 0 ); | ||
|  | 
 | ||
|  | 			} else { | ||
|  | 
 | ||
|  | 				cubeCamera.up.set( 0, upSign[ i ], 0 ); | ||
|  | 				cubeCamera.lookAt( 0, 0, forwardSign[ i ] ); | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 			const size = this._cubeSize; | ||
|  | 
 | ||
|  | 			_setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size ); | ||
|  | 
 | ||
|  | 			renderer.render( scene, cubeCamera ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		renderer.autoClear = originalAutoClear; | ||
|  | 		scene.background = background; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_textureToCubeUV( texture, cubeUVRenderTarget ) { | ||
|  | 
 | ||
|  | 		const renderer = this._renderer; | ||
|  | 
 | ||
|  | 		const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ); | ||
|  | 
 | ||
|  | 		if ( isCubeTexture ) { | ||
|  | 
 | ||
|  | 			if ( this._cubemapMaterial === null ) { | ||
|  | 
 | ||
|  | 				this._cubemapMaterial = _getCubemapMaterial( texture ); | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 		} else { | ||
|  | 
 | ||
|  | 			if ( this._equirectMaterial === null ) { | ||
|  | 
 | ||
|  | 				this._equirectMaterial = _getEquirectMaterial( texture ); | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial; | ||
|  | 		material.fragmentNode.value = texture; | ||
|  | 
 | ||
|  | 		const mesh = this._lodMeshes[ 0 ]; | ||
|  | 		mesh.material = material; | ||
|  | 
 | ||
|  | 		const size = this._cubeSize; | ||
|  | 
 | ||
|  | 		_setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size ); | ||
|  | 
 | ||
|  | 		renderer.setRenderTarget( cubeUVRenderTarget ); | ||
|  | 		renderer.render( mesh, _flatCamera ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_applyPMREM( cubeUVRenderTarget ) { | ||
|  | 
 | ||
|  | 		const renderer = this._renderer; | ||
|  | 		const autoClear = renderer.autoClear; | ||
|  | 		renderer.autoClear = false; | ||
|  | 		const n = this._lodPlanes.length; | ||
|  | 
 | ||
|  | 		for ( let i = 1; i < n; i ++ ) { | ||
|  | 
 | ||
|  | 			const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] ); | ||
|  | 
 | ||
|  | 			const poleAxis = _axisDirections[ ( n - i - 1 ) % _axisDirections.length ]; | ||
|  | 
 | ||
|  | 			this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		renderer.autoClear = autoClear; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 * This is a two-pass Gaussian blur for a cubemap. Normally this is done | ||
|  | 	 * vertically and horizontally, but this breaks down on a cube. Here we apply | ||
|  | 	 * the blur latitudinally (around the poles), and then longitudinally (towards | ||
|  | 	 * the poles) to approximate the orthogonally-separable blur. It is least | ||
|  | 	 * accurate at the poles, but still does a decent job. | ||
|  | 	 */ | ||
|  | 	_blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { | ||
|  | 
 | ||
|  | 		const pingPongRenderTarget = this._pingPongRenderTarget; | ||
|  | 
 | ||
|  | 		this._halfBlur( | ||
|  | 			cubeUVRenderTarget, | ||
|  | 			pingPongRenderTarget, | ||
|  | 			lodIn, | ||
|  | 			lodOut, | ||
|  | 			sigma, | ||
|  | 			'latitudinal', | ||
|  | 			poleAxis ); | ||
|  | 
 | ||
|  | 		this._halfBlur( | ||
|  | 			pingPongRenderTarget, | ||
|  | 			cubeUVRenderTarget, | ||
|  | 			lodOut, | ||
|  | 			lodOut, | ||
|  | 			sigma, | ||
|  | 			'longitudinal', | ||
|  | 			poleAxis ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { | ||
|  | 
 | ||
|  | 		const renderer = this._renderer; | ||
|  | 		const blurMaterial = this._blurMaterial; | ||
|  | 
 | ||
|  | 		if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { | ||
|  | 
 | ||
|  | 			console.error( 'blur direction must be either latitudinal or longitudinal!' ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Number of standard deviations at which to cut off the discrete approximation.
 | ||
|  | 		const STANDARD_DEVIATIONS = 3; | ||
|  | 
 | ||
|  | 		const blurMesh = this._lodMeshes[ lodOut ]; | ||
|  | 		blurMesh.material = blurMaterial; | ||
|  | 
 | ||
|  | 		const blurUniforms = blurMaterial.uniforms; | ||
|  | 
 | ||
|  | 		const pixels = this._sizeLods[ lodIn ] - 1; | ||
|  | 		const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 ); | ||
|  | 		const sigmaPixels = sigmaRadians / radiansPerPixel; | ||
|  | 		const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES; | ||
|  | 
 | ||
|  | 		if ( samples > MAX_SAMPLES ) { | ||
|  | 
 | ||
|  | 			console.warn( `sigmaRadians, ${ | ||
|  | 				sigmaRadians}, is too large and will clip, as it requested ${ | ||
|  | 				samples} samples when the maximum is set to ${MAX_SAMPLES}` );
 | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		const weights = []; | ||
|  | 		let sum = 0; | ||
|  | 
 | ||
|  | 		for ( let i = 0; i < MAX_SAMPLES; ++ i ) { | ||
|  | 
 | ||
|  | 			const x = i / sigmaPixels; | ||
|  | 			const weight = Math.exp( - x * x / 2 ); | ||
|  | 			weights.push( weight ); | ||
|  | 
 | ||
|  | 			if ( i === 0 ) { | ||
|  | 
 | ||
|  | 				sum += weight; | ||
|  | 
 | ||
|  | 			} else if ( i < samples ) { | ||
|  | 
 | ||
|  | 				sum += 2 * weight; | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		for ( let i = 0; i < weights.length; i ++ ) { | ||
|  | 
 | ||
|  | 			weights[ i ] = weights[ i ] / sum; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		targetIn.texture.frame = ( targetIn.texture.frame || 0 ) + 1; | ||
|  | 
 | ||
|  | 		blurUniforms.envMap.value = targetIn.texture; | ||
|  | 		blurUniforms.samples.value = samples; | ||
|  | 		blurUniforms.weights.array = weights; | ||
|  | 		blurUniforms.latitudinal.value = direction === 'latitudinal' ? 1 : 0; | ||
|  | 
 | ||
|  | 		if ( poleAxis ) { | ||
|  | 
 | ||
|  | 			blurUniforms.poleAxis.value = poleAxis; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		const { _lodMax } = this; | ||
|  | 		blurUniforms.dTheta.value = radiansPerPixel; | ||
|  | 		blurUniforms.mipInt.value = _lodMax - lodIn; | ||
|  | 
 | ||
|  | 		const outputSize = this._sizeLods[ lodOut ]; | ||
|  | 		const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 ); | ||
|  | 		const y = 4 * ( this._cubeSize - outputSize ); | ||
|  | 
 | ||
|  | 		_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize ); | ||
|  | 		renderer.setRenderTarget( targetOut ); | ||
|  | 		renderer.render( blurMesh, _flatCamera ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | function _createPlanes( lodMax ) { | ||
|  | 
 | ||
|  | 	const lodPlanes = []; | ||
|  | 	const sizeLods = []; | ||
|  | 	const sigmas = []; | ||
|  | 	const lodMeshes = []; | ||
|  | 
 | ||
|  | 	let lod = lodMax; | ||
|  | 
 | ||
|  | 	const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; | ||
|  | 
 | ||
|  | 	for ( let i = 0; i < totalLods; i ++ ) { | ||
|  | 
 | ||
|  | 		const sizeLod = Math.pow( 2, lod ); | ||
|  | 		sizeLods.push( sizeLod ); | ||
|  | 		let sigma = 1.0 / sizeLod; | ||
|  | 
 | ||
|  | 		if ( i > lodMax - LOD_MIN ) { | ||
|  | 
 | ||
|  | 			sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ]; | ||
|  | 
 | ||
|  | 		} else if ( i === 0 ) { | ||
|  | 
 | ||
|  | 			sigma = 0; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		sigmas.push( sigma ); | ||
|  | 
 | ||
|  | 		const texelSize = 1.0 / ( sizeLod - 2 ); | ||
|  | 		const min = - texelSize; | ||
|  | 		const max = 1 + texelSize; | ||
|  | 		const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; | ||
|  | 
 | ||
|  | 		const cubeFaces = 6; | ||
|  | 		const vertices = 6; | ||
|  | 		const positionSize = 3; | ||
|  | 		const uvSize = 2; | ||
|  | 		const faceIndexSize = 1; | ||
|  | 
 | ||
|  | 		const position = new Float32Array( positionSize * vertices * cubeFaces ); | ||
|  | 		const uv = new Float32Array( uvSize * vertices * cubeFaces ); | ||
|  | 		const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); | ||
|  | 
 | ||
|  | 		for ( let face = 0; face < cubeFaces; face ++ ) { | ||
|  | 
 | ||
|  | 			const x = ( face % 3 ) * 2 / 3 - 1; | ||
|  | 			const y = face > 2 ? 0 : - 1; | ||
|  | 			const coordinates = [ | ||
|  | 				x, y, 0, | ||
|  | 				x + 2 / 3, y, 0, | ||
|  | 				x + 2 / 3, y + 1, 0, | ||
|  | 				x, y, 0, | ||
|  | 				x + 2 / 3, y + 1, 0, | ||
|  | 				x, y + 1, 0 | ||
|  | 			]; | ||
|  | 
 | ||
|  | 			const faceIdx = _faceLib[ face ]; | ||
|  | 			position.set( coordinates, positionSize * vertices * faceIdx ); | ||
|  | 			uv.set( uv1, uvSize * vertices * faceIdx ); | ||
|  | 			const fill = [ faceIdx, faceIdx, faceIdx, faceIdx, faceIdx, faceIdx ]; | ||
|  | 			faceIndex.set( fill, faceIndexSize * vertices * faceIdx ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		const planes = new BufferGeometry(); | ||
|  | 		planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); | ||
|  | 		planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); | ||
|  | 		planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); | ||
|  | 		lodPlanes.push( planes ); | ||
|  | 		lodMeshes.push( new Mesh( planes, null ) ); | ||
|  | 
 | ||
|  | 		if ( lod > LOD_MIN ) { | ||
|  | 
 | ||
|  | 			lod --; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return { lodPlanes, sizeLods, sigmas, lodMeshes }; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | function _createRenderTarget( width, height, params ) { | ||
|  | 
 | ||
|  | 	const cubeUVRenderTarget = new RenderTarget( width, height, params ); | ||
|  | 	cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; | ||
|  | 	cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; | ||
|  | 	cubeUVRenderTarget.texture.isPMREMTexture = true; | ||
|  | 	cubeUVRenderTarget.scissorTest = true; | ||
|  | 	return cubeUVRenderTarget; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | function _setViewport( target, x, y, width, height ) { | ||
|  | 
 | ||
|  | 	const viewY = target.height - height - y; | ||
|  | 
 | ||
|  | 	target.viewport.set( x, viewY, width, height ); | ||
|  | 	target.scissor.set( x, viewY, width, height ); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | function _getMaterial() { | ||
|  | 
 | ||
|  | 	const material = new NodeMaterial(); | ||
|  | 	material.depthTest = false; | ||
|  | 	material.depthWrite = false; | ||
|  | 	material.blending = NoBlending; | ||
|  | 
 | ||
|  | 	return material; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | function _getBlurShader( lodMax, width, height ) { | ||
|  | 
 | ||
|  | 	const weights = uniforms( new Array( MAX_SAMPLES ).fill( 0 ) ); | ||
|  | 	const poleAxis = uniform( new Vector3( 0, 1, 0 ) ); | ||
|  | 	const dTheta = uniform( 0 ); | ||
|  | 	const n = float( MAX_SAMPLES ); | ||
|  | 	const latitudinal = uniform( 0 ); // false, bool
 | ||
|  | 	const samples = uniform( 1 ); // int
 | ||
|  | 	const envMap = texture( null ); | ||
|  | 	const mipInt = uniform( 0 ); // int
 | ||
|  | 	const CUBEUV_TEXEL_WIDTH = float( 1 / width ); | ||
|  | 	const CUBEUV_TEXEL_HEIGHT = float( 1 / height ); | ||
|  | 	const CUBEUV_MAX_MIP = float( lodMax ); | ||
|  | 
 | ||
|  | 	const materialUniforms = { | ||
|  | 		n, | ||
|  | 		latitudinal, | ||
|  | 		weights, | ||
|  | 		poleAxis, | ||
|  | 		outputDirection, | ||
|  | 		dTheta, | ||
|  | 		samples, | ||
|  | 		envMap, | ||
|  | 		mipInt, | ||
|  | 		CUBEUV_TEXEL_WIDTH, | ||
|  | 		CUBEUV_TEXEL_HEIGHT, | ||
|  | 		CUBEUV_MAX_MIP | ||
|  | 	}; | ||
|  | 
 | ||
|  | 	const material = _getMaterial(); | ||
|  | 	material.uniforms = materialUniforms; // TODO: Move to outside of the material
 | ||
|  | 	material.fragmentNode = blur( { ...materialUniforms, latitudinal: latitudinal.equal( 1 ) } ); | ||
|  | 
 | ||
|  | 	return material; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | function _getCubemapMaterial( envTexture ) { | ||
|  | 
 | ||
|  | 	const material = _getMaterial(); | ||
|  | 	material.fragmentNode = cubeTexture( envTexture, outputDirection ); | ||
|  | 
 | ||
|  | 	return material; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | function _getEquirectMaterial( envTexture ) { | ||
|  | 
 | ||
|  | 	const material = _getMaterial(); | ||
|  | 	material.fragmentNode = texture( envTexture, equirectUV( outputDirection ), 0 ); | ||
|  | 
 | ||
|  | 	return material; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | export default PMREMGenerator; |