添加关照、全局等高线、修改图层问题
This commit is contained in:
		
							
								
								
									
										773
									
								
								dist/electron/static/sdk/three/jsm/renderers/common/extras/PMREMGenerator.js
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										773
									
								
								dist/electron/static/sdk/three/jsm/renderers/common/extras/PMREMGenerator.js
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,773 @@
 | 
			
		||||
import NodeMaterial from '../../../nodes/materials/NodeMaterial.js';
 | 
			
		||||
import { getDirection, blur } from '../../../nodes/pmrem/PMREMUtils.js';
 | 
			
		||||
import { equirectUV } from '../../../nodes/utils/EquirectUVNode.js';
 | 
			
		||||
import { uniform } from '../../../nodes/core/UniformNode.js';
 | 
			
		||||
import { uniforms } from '../../../nodes/accessors/UniformsNode.js';
 | 
			
		||||
import { texture } from '../../../nodes/accessors/TextureNode.js';
 | 
			
		||||
import { cubeTexture } from '../../../nodes/accessors/CubeTextureNode.js';
 | 
			
		||||
import { float, vec3 } from '../../../nodes/shadernode/ShaderNode.js';
 | 
			
		||||
import { uv } from '../../../nodes/accessors/UVNode.js';
 | 
			
		||||
import { attribute } from '../../../nodes/core/AttributeNode.js';
 | 
			
		||||
import {
 | 
			
		||||
	OrthographicCamera,
 | 
			
		||||
	Color,
 | 
			
		||||
	Vector3,
 | 
			
		||||
	BufferGeometry,
 | 
			
		||||
	BufferAttribute,
 | 
			
		||||
	RenderTarget,
 | 
			
		||||
	Mesh,
 | 
			
		||||
	CubeReflectionMapping,
 | 
			
		||||
	CubeRefractionMapping,
 | 
			
		||||
	CubeUVReflectionMapping,
 | 
			
		||||
	LinearFilter,
 | 
			
		||||
	NoBlending,
 | 
			
		||||
	RGBAFormat,
 | 
			
		||||
	HalfFloatType,
 | 
			
		||||
	BackSide,
 | 
			
		||||
	LinearSRGBColorSpace,
 | 
			
		||||
	PerspectiveCamera,
 | 
			
		||||
	MeshBasicMaterial,
 | 
			
		||||
	BoxGeometry
 | 
			
		||||
} from 'three';
 | 
			
		||||
 | 
			
		||||
const LOD_MIN = 4;
 | 
			
		||||
 | 
			
		||||
// The standard deviations (radians) associated with the extra mips. These are
 | 
			
		||||
// chosen to approximate a Trowbridge-Reitz distribution function times the
 | 
			
		||||
// geometric shadowing function. These sigma values squared must match the
 | 
			
		||||
// variance #defines in cube_uv_reflection_fragment.glsl.js.
 | 
			
		||||
const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
 | 
			
		||||
 | 
			
		||||
// The maximum length of the blur for loop. Smaller sigmas will use fewer
 | 
			
		||||
// samples and exit early, but not recompile the shader.
 | 
			
		||||
const MAX_SAMPLES = 20;
 | 
			
		||||
 | 
			
		||||
const _flatCamera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
 | 
			
		||||
const _cubeCamera = /*@__PURE__*/ new PerspectiveCamera( 90, 1 );
 | 
			
		||||
const _clearColor = /*@__PURE__*/ new Color();
 | 
			
		||||
let _oldTarget = null;
 | 
			
		||||
let _oldActiveCubeFace = 0;
 | 
			
		||||
let _oldActiveMipmapLevel = 0;
 | 
			
		||||
 | 
			
		||||
// Golden Ratio
 | 
			
		||||
const PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
 | 
			
		||||
const INV_PHI = 1 / PHI;
 | 
			
		||||
 | 
			
		||||
// Vertices of a dodecahedron (except the opposites, which represent the
 | 
			
		||||
// same axis), used as axis directions evenly spread on a sphere.
 | 
			
		||||
const _axisDirections = [
 | 
			
		||||
	/*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ),
 | 
			
		||||
	/*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ),
 | 
			
		||||
	/*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ),
 | 
			
		||||
	/*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ),
 | 
			
		||||
	/*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ),
 | 
			
		||||
	/*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ),
 | 
			
		||||
	/*@__PURE__*/ new Vector3( - 1, 1, - 1 ),
 | 
			
		||||
	/*@__PURE__*/ new Vector3( 1, 1, - 1 ),
 | 
			
		||||
	/*@__PURE__*/ new Vector3( - 1, 1, 1 ),
 | 
			
		||||
	/*@__PURE__*/ new Vector3( 1, 1, 1 )
 | 
			
		||||
];
 | 
			
		||||
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
// WebGPU Face indices
 | 
			
		||||
const _faceLib = [
 | 
			
		||||
	3, 1, 5,
 | 
			
		||||
	0, 4, 2
 | 
			
		||||
];
 | 
			
		||||
 | 
			
		||||
const direction = getDirection( uv(), attribute( 'faceIndex' ) ).normalize();
 | 
			
		||||
const outputDirection = vec3( direction.x, direction.y.negate(), direction.z );
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * This class generates a Prefiltered, Mipmapped Radiance Environment Map
 | 
			
		||||
 * (PMREM) from a cubeMap environment texture. This allows different levels of
 | 
			
		||||
 * blur to be quickly accessed based on material roughness. It is packed into a
 | 
			
		||||
 * special CubeUV format that allows us to perform custom interpolation so that
 | 
			
		||||
 * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
 | 
			
		||||
 * chain, it only goes down to the LOD_MIN level (above), and then creates extra
 | 
			
		||||
 * even more filtered 'mips' at the same LOD_MIN resolution, associated with
 | 
			
		||||
 * higher roughness levels. In this way we maintain resolution to smoothly
 | 
			
		||||
 * interpolate diffuse lighting while limiting sampling computation.
 | 
			
		||||
 *
 | 
			
		||||
 * Paper: Fast, Accurate Image-Based Lighting
 | 
			
		||||
 * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
class PMREMGenerator {
 | 
			
		||||
 | 
			
		||||
	constructor( renderer ) {
 | 
			
		||||
 | 
			
		||||
		this._renderer = renderer;
 | 
			
		||||
		this._pingPongRenderTarget = null;
 | 
			
		||||
 | 
			
		||||
		this._lodMax = 0;
 | 
			
		||||
		this._cubeSize = 0;
 | 
			
		||||
		this._lodPlanes = [];
 | 
			
		||||
		this._sizeLods = [];
 | 
			
		||||
		this._sigmas = [];
 | 
			
		||||
		this._lodMeshes = [];
 | 
			
		||||
 | 
			
		||||
		this._blurMaterial = null;
 | 
			
		||||
		this._cubemapMaterial = null;
 | 
			
		||||
		this._equirectMaterial = null;
 | 
			
		||||
		this._backgroundBox = null;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/**
 | 
			
		||||
	 * Generates a PMREM from a supplied Scene, which can be faster than using an
 | 
			
		||||
	 * image if networking bandwidth is low. Optional sigma specifies a blur radius
 | 
			
		||||
	 * in radians to be applied to the scene before PMREM generation. Optional near
 | 
			
		||||
	 * and far planes ensure the scene is rendered in its entirety (the cubeCamera
 | 
			
		||||
	 * is placed at the origin).
 | 
			
		||||
	 */
 | 
			
		||||
	fromScene( scene, sigma = 0, near = 0.1, far = 100 ) {
 | 
			
		||||
 | 
			
		||||
		_oldTarget = this._renderer.getRenderTarget();
 | 
			
		||||
		_oldActiveCubeFace = this._renderer.getActiveCubeFace();
 | 
			
		||||
		_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
 | 
			
		||||
 | 
			
		||||
		this._setSize( 256 );
 | 
			
		||||
 | 
			
		||||
		const cubeUVRenderTarget = this._allocateTargets();
 | 
			
		||||
		cubeUVRenderTarget.depthBuffer = true;
 | 
			
		||||
 | 
			
		||||
		this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
 | 
			
		||||
 | 
			
		||||
		if ( sigma > 0 ) {
 | 
			
		||||
 | 
			
		||||
			this._blur( cubeUVRenderTarget, 0, 0, sigma );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		this._applyPMREM( cubeUVRenderTarget );
 | 
			
		||||
 | 
			
		||||
		this._cleanup( cubeUVRenderTarget );
 | 
			
		||||
 | 
			
		||||
		return cubeUVRenderTarget;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/**
 | 
			
		||||
	 * Generates a PMREM from an equirectangular texture, which can be either LDR
 | 
			
		||||
	 * or HDR. The ideal input image size is 1k (1024 x 512),
 | 
			
		||||
	 * as this matches best with the 256 x 256 cubemap output.
 | 
			
		||||
	 */
 | 
			
		||||
	fromEquirectangular( equirectangular, renderTarget = null ) {
 | 
			
		||||
 | 
			
		||||
		return this._fromTexture( equirectangular, renderTarget );
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/**
 | 
			
		||||
	 * Generates a PMREM from an cubemap texture, which can be either LDR
 | 
			
		||||
	 * or HDR. The ideal input cube size is 256 x 256,
 | 
			
		||||
	 * as this matches best with the 256 x 256 cubemap output.
 | 
			
		||||
	 */
 | 
			
		||||
	fromCubemap( cubemap, renderTarget = null ) {
 | 
			
		||||
 | 
			
		||||
		return this._fromTexture( cubemap, renderTarget );
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/**
 | 
			
		||||
	 * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
 | 
			
		||||
	 * your texture's network fetch for increased concurrency.
 | 
			
		||||
	 */
 | 
			
		||||
	compileCubemapShader() {
 | 
			
		||||
 | 
			
		||||
		if ( this._cubemapMaterial === null ) {
 | 
			
		||||
 | 
			
		||||
			this._cubemapMaterial = _getCubemapMaterial();
 | 
			
		||||
			this._compileMaterial( this._cubemapMaterial );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/**
 | 
			
		||||
	 * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
 | 
			
		||||
	 * your texture's network fetch for increased concurrency.
 | 
			
		||||
	 */
 | 
			
		||||
	compileEquirectangularShader() {
 | 
			
		||||
 | 
			
		||||
		if ( this._equirectMaterial === null ) {
 | 
			
		||||
 | 
			
		||||
			this._equirectMaterial = _getEquirectMaterial();
 | 
			
		||||
			this._compileMaterial( this._equirectMaterial );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/**
 | 
			
		||||
	 * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
 | 
			
		||||
	 * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
 | 
			
		||||
	 * one of them will cause any others to also become unusable.
 | 
			
		||||
	 */
 | 
			
		||||
	dispose() {
 | 
			
		||||
 | 
			
		||||
		this._dispose();
 | 
			
		||||
 | 
			
		||||
		if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose();
 | 
			
		||||
		if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose();
 | 
			
		||||
		if ( this._backgroundBox !== null ) {
 | 
			
		||||
 | 
			
		||||
			this._backgroundBox.geometry.dispose();
 | 
			
		||||
			this._backgroundBox.material.dispose();
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// private interface
 | 
			
		||||
 | 
			
		||||
	_setSize( cubeSize ) {
 | 
			
		||||
 | 
			
		||||
		this._lodMax = Math.floor( Math.log2( cubeSize ) );
 | 
			
		||||
		this._cubeSize = Math.pow( 2, this._lodMax );
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	_dispose() {
 | 
			
		||||
 | 
			
		||||
		if ( this._blurMaterial !== null ) this._blurMaterial.dispose();
 | 
			
		||||
 | 
			
		||||
		if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose();
 | 
			
		||||
 | 
			
		||||
		for ( let i = 0; i < this._lodPlanes.length; i ++ ) {
 | 
			
		||||
 | 
			
		||||
			this._lodPlanes[ i ].dispose();
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	_cleanup( outputTarget ) {
 | 
			
		||||
 | 
			
		||||
		this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel );
 | 
			
		||||
		outputTarget.scissorTest = false;
 | 
			
		||||
		_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	_fromTexture( texture, renderTarget ) {
 | 
			
		||||
 | 
			
		||||
		if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) {
 | 
			
		||||
 | 
			
		||||
			this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) );
 | 
			
		||||
 | 
			
		||||
		} else { // Equirectangular
 | 
			
		||||
 | 
			
		||||
			this._setSize( texture.image.width / 4 );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		_oldTarget = this._renderer.getRenderTarget();
 | 
			
		||||
		_oldActiveCubeFace = this._renderer.getActiveCubeFace();
 | 
			
		||||
		_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
 | 
			
		||||
 | 
			
		||||
		const cubeUVRenderTarget = renderTarget || this._allocateTargets();
 | 
			
		||||
		this._textureToCubeUV( texture, cubeUVRenderTarget );
 | 
			
		||||
		this._applyPMREM( cubeUVRenderTarget );
 | 
			
		||||
		this._cleanup( cubeUVRenderTarget );
 | 
			
		||||
 | 
			
		||||
		return cubeUVRenderTarget;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	_allocateTargets() {
 | 
			
		||||
 | 
			
		||||
		const width = 3 * Math.max( this._cubeSize, 16 * 7 );
 | 
			
		||||
		const height = 4 * this._cubeSize;
 | 
			
		||||
 | 
			
		||||
		const params = {
 | 
			
		||||
			magFilter: LinearFilter,
 | 
			
		||||
			minFilter: LinearFilter,
 | 
			
		||||
			generateMipmaps: false,
 | 
			
		||||
			type: HalfFloatType,
 | 
			
		||||
			format: RGBAFormat,
 | 
			
		||||
			colorSpace: LinearSRGBColorSpace,
 | 
			
		||||
			//depthBuffer: false
 | 
			
		||||
		};
 | 
			
		||||
 | 
			
		||||
		const cubeUVRenderTarget = _createRenderTarget( width, height, params );
 | 
			
		||||
 | 
			
		||||
		if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) {
 | 
			
		||||
 | 
			
		||||
			if ( this._pingPongRenderTarget !== null ) {
 | 
			
		||||
 | 
			
		||||
				this._dispose();
 | 
			
		||||
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			this._pingPongRenderTarget = _createRenderTarget( width, height, params );
 | 
			
		||||
 | 
			
		||||
			const { _lodMax } = this;
 | 
			
		||||
			( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas, lodMeshes: this._lodMeshes } = _createPlanes( _lodMax ) );
 | 
			
		||||
 | 
			
		||||
			this._blurMaterial = _getBlurShader( _lodMax, width, height );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		return cubeUVRenderTarget;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	_compileMaterial( material ) {
 | 
			
		||||
 | 
			
		||||
		const tmpMesh = this._lodMeshes[ 0 ];
 | 
			
		||||
		tmpMesh.material = material;
 | 
			
		||||
 | 
			
		||||
		this._renderer.compile( tmpMesh, _flatCamera );
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	_sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
 | 
			
		||||
 | 
			
		||||
		const cubeCamera = _cubeCamera;
 | 
			
		||||
		cubeCamera.near = near;
 | 
			
		||||
		cubeCamera.far = far;
 | 
			
		||||
 | 
			
		||||
		// px, py, pz, nx, ny, nz
 | 
			
		||||
		const upSign = [ - 1, 1, - 1, - 1, - 1, - 1 ];
 | 
			
		||||
		const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ];
 | 
			
		||||
 | 
			
		||||
		const renderer = this._renderer;
 | 
			
		||||
 | 
			
		||||
		const originalAutoClear = renderer.autoClear;
 | 
			
		||||
 | 
			
		||||
		renderer.getClearColor( _clearColor );
 | 
			
		||||
 | 
			
		||||
		renderer.autoClear = false;
 | 
			
		||||
 | 
			
		||||
		let backgroundBox = this._backgroundBox;
 | 
			
		||||
 | 
			
		||||
		if ( backgroundBox === null ) {
 | 
			
		||||
 | 
			
		||||
			const backgroundMaterial = new MeshBasicMaterial( {
 | 
			
		||||
				name: 'PMREM.Background',
 | 
			
		||||
				side: BackSide,
 | 
			
		||||
				depthWrite: false,
 | 
			
		||||
				depthTest: false
 | 
			
		||||
			} );
 | 
			
		||||
 | 
			
		||||
			backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		let useSolidColor = false;
 | 
			
		||||
		const background = scene.background;
 | 
			
		||||
 | 
			
		||||
		if ( background ) {
 | 
			
		||||
 | 
			
		||||
			if ( background.isColor ) {
 | 
			
		||||
 | 
			
		||||
				backgroundBox.material.color.copy( background );
 | 
			
		||||
				scene.background = null;
 | 
			
		||||
				useSolidColor = true;
 | 
			
		||||
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		} else {
 | 
			
		||||
 | 
			
		||||
			backgroundBox.material.color.copy( _clearColor );
 | 
			
		||||
			useSolidColor = true;
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		renderer.setRenderTarget( cubeUVRenderTarget );
 | 
			
		||||
 | 
			
		||||
		renderer.clear();
 | 
			
		||||
 | 
			
		||||
		if ( useSolidColor ) {
 | 
			
		||||
 | 
			
		||||
			renderer.render( backgroundBox, cubeCamera );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		for ( let i = 0; i < 6; i ++ ) {
 | 
			
		||||
 | 
			
		||||
			const col = i % 3;
 | 
			
		||||
 | 
			
		||||
			if ( col === 0 ) {
 | 
			
		||||
 | 
			
		||||
				cubeCamera.up.set( 0, upSign[ i ], 0 );
 | 
			
		||||
				cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
 | 
			
		||||
 | 
			
		||||
			} else if ( col === 1 ) {
 | 
			
		||||
 | 
			
		||||
				cubeCamera.up.set( 0, 0, upSign[ i ] );
 | 
			
		||||
				cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
 | 
			
		||||
 | 
			
		||||
			} else {
 | 
			
		||||
 | 
			
		||||
				cubeCamera.up.set( 0, upSign[ i ], 0 );
 | 
			
		||||
				cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
 | 
			
		||||
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			const size = this._cubeSize;
 | 
			
		||||
 | 
			
		||||
			_setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size );
 | 
			
		||||
 | 
			
		||||
			renderer.render( scene, cubeCamera );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		renderer.autoClear = originalAutoClear;
 | 
			
		||||
		scene.background = background;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	_textureToCubeUV( texture, cubeUVRenderTarget ) {
 | 
			
		||||
 | 
			
		||||
		const renderer = this._renderer;
 | 
			
		||||
 | 
			
		||||
		const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping );
 | 
			
		||||
 | 
			
		||||
		if ( isCubeTexture ) {
 | 
			
		||||
 | 
			
		||||
			if ( this._cubemapMaterial === null ) {
 | 
			
		||||
 | 
			
		||||
				this._cubemapMaterial = _getCubemapMaterial( texture );
 | 
			
		||||
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		} else {
 | 
			
		||||
 | 
			
		||||
			if ( this._equirectMaterial === null ) {
 | 
			
		||||
 | 
			
		||||
				this._equirectMaterial = _getEquirectMaterial( texture );
 | 
			
		||||
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial;
 | 
			
		||||
		material.fragmentNode.value = texture;
 | 
			
		||||
 | 
			
		||||
		const mesh = this._lodMeshes[ 0 ];
 | 
			
		||||
		mesh.material = material;
 | 
			
		||||
 | 
			
		||||
		const size = this._cubeSize;
 | 
			
		||||
 | 
			
		||||
		_setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size );
 | 
			
		||||
 | 
			
		||||
		renderer.setRenderTarget( cubeUVRenderTarget );
 | 
			
		||||
		renderer.render( mesh, _flatCamera );
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	_applyPMREM( cubeUVRenderTarget ) {
 | 
			
		||||
 | 
			
		||||
		const renderer = this._renderer;
 | 
			
		||||
		const autoClear = renderer.autoClear;
 | 
			
		||||
		renderer.autoClear = false;
 | 
			
		||||
		const n = this._lodPlanes.length;
 | 
			
		||||
 | 
			
		||||
		for ( let i = 1; i < n; i ++ ) {
 | 
			
		||||
 | 
			
		||||
			const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] );
 | 
			
		||||
 | 
			
		||||
			const poleAxis = _axisDirections[ ( n - i - 1 ) % _axisDirections.length ];
 | 
			
		||||
 | 
			
		||||
			this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		renderer.autoClear = autoClear;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/**
 | 
			
		||||
	 * This is a two-pass Gaussian blur for a cubemap. Normally this is done
 | 
			
		||||
	 * vertically and horizontally, but this breaks down on a cube. Here we apply
 | 
			
		||||
	 * the blur latitudinally (around the poles), and then longitudinally (towards
 | 
			
		||||
	 * the poles) to approximate the orthogonally-separable blur. It is least
 | 
			
		||||
	 * accurate at the poles, but still does a decent job.
 | 
			
		||||
	 */
 | 
			
		||||
	_blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
 | 
			
		||||
 | 
			
		||||
		const pingPongRenderTarget = this._pingPongRenderTarget;
 | 
			
		||||
 | 
			
		||||
		this._halfBlur(
 | 
			
		||||
			cubeUVRenderTarget,
 | 
			
		||||
			pingPongRenderTarget,
 | 
			
		||||
			lodIn,
 | 
			
		||||
			lodOut,
 | 
			
		||||
			sigma,
 | 
			
		||||
			'latitudinal',
 | 
			
		||||
			poleAxis );
 | 
			
		||||
 | 
			
		||||
		this._halfBlur(
 | 
			
		||||
			pingPongRenderTarget,
 | 
			
		||||
			cubeUVRenderTarget,
 | 
			
		||||
			lodOut,
 | 
			
		||||
			lodOut,
 | 
			
		||||
			sigma,
 | 
			
		||||
			'longitudinal',
 | 
			
		||||
			poleAxis );
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	_halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
 | 
			
		||||
 | 
			
		||||
		const renderer = this._renderer;
 | 
			
		||||
		const blurMaterial = this._blurMaterial;
 | 
			
		||||
 | 
			
		||||
		if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
 | 
			
		||||
 | 
			
		||||
			console.error( 'blur direction must be either latitudinal or longitudinal!' );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		// Number of standard deviations at which to cut off the discrete approximation.
 | 
			
		||||
		const STANDARD_DEVIATIONS = 3;
 | 
			
		||||
 | 
			
		||||
		const blurMesh = this._lodMeshes[ lodOut ];
 | 
			
		||||
		blurMesh.material = blurMaterial;
 | 
			
		||||
 | 
			
		||||
		const blurUniforms = blurMaterial.uniforms;
 | 
			
		||||
 | 
			
		||||
		const pixels = this._sizeLods[ lodIn ] - 1;
 | 
			
		||||
		const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
 | 
			
		||||
		const sigmaPixels = sigmaRadians / radiansPerPixel;
 | 
			
		||||
		const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
 | 
			
		||||
 | 
			
		||||
		if ( samples > MAX_SAMPLES ) {
 | 
			
		||||
 | 
			
		||||
			console.warn( `sigmaRadians, ${
 | 
			
		||||
				sigmaRadians}, is too large and will clip, as it requested ${
 | 
			
		||||
				samples} samples when the maximum is set to ${MAX_SAMPLES}` );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		const weights = [];
 | 
			
		||||
		let sum = 0;
 | 
			
		||||
 | 
			
		||||
		for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
 | 
			
		||||
 | 
			
		||||
			const x = i / sigmaPixels;
 | 
			
		||||
			const weight = Math.exp( - x * x / 2 );
 | 
			
		||||
			weights.push( weight );
 | 
			
		||||
 | 
			
		||||
			if ( i === 0 ) {
 | 
			
		||||
 | 
			
		||||
				sum += weight;
 | 
			
		||||
 | 
			
		||||
			} else if ( i < samples ) {
 | 
			
		||||
 | 
			
		||||
				sum += 2 * weight;
 | 
			
		||||
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		for ( let i = 0; i < weights.length; i ++ ) {
 | 
			
		||||
 | 
			
		||||
			weights[ i ] = weights[ i ] / sum;
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		targetIn.texture.frame = ( targetIn.texture.frame || 0 ) + 1;
 | 
			
		||||
 | 
			
		||||
		blurUniforms.envMap.value = targetIn.texture;
 | 
			
		||||
		blurUniforms.samples.value = samples;
 | 
			
		||||
		blurUniforms.weights.array = weights;
 | 
			
		||||
		blurUniforms.latitudinal.value = direction === 'latitudinal' ? 1 : 0;
 | 
			
		||||
 | 
			
		||||
		if ( poleAxis ) {
 | 
			
		||||
 | 
			
		||||
			blurUniforms.poleAxis.value = poleAxis;
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		const { _lodMax } = this;
 | 
			
		||||
		blurUniforms.dTheta.value = radiansPerPixel;
 | 
			
		||||
		blurUniforms.mipInt.value = _lodMax - lodIn;
 | 
			
		||||
 | 
			
		||||
		const outputSize = this._sizeLods[ lodOut ];
 | 
			
		||||
		const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 );
 | 
			
		||||
		const y = 4 * ( this._cubeSize - outputSize );
 | 
			
		||||
 | 
			
		||||
		_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
 | 
			
		||||
		renderer.setRenderTarget( targetOut );
 | 
			
		||||
		renderer.render( blurMesh, _flatCamera );
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
function _createPlanes( lodMax ) {
 | 
			
		||||
 | 
			
		||||
	const lodPlanes = [];
 | 
			
		||||
	const sizeLods = [];
 | 
			
		||||
	const sigmas = [];
 | 
			
		||||
	const lodMeshes = [];
 | 
			
		||||
 | 
			
		||||
	let lod = lodMax;
 | 
			
		||||
 | 
			
		||||
	const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
 | 
			
		||||
 | 
			
		||||
	for ( let i = 0; i < totalLods; i ++ ) {
 | 
			
		||||
 | 
			
		||||
		const sizeLod = Math.pow( 2, lod );
 | 
			
		||||
		sizeLods.push( sizeLod );
 | 
			
		||||
		let sigma = 1.0 / sizeLod;
 | 
			
		||||
 | 
			
		||||
		if ( i > lodMax - LOD_MIN ) {
 | 
			
		||||
 | 
			
		||||
			sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ];
 | 
			
		||||
 | 
			
		||||
		} else if ( i === 0 ) {
 | 
			
		||||
 | 
			
		||||
			sigma = 0;
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		sigmas.push( sigma );
 | 
			
		||||
 | 
			
		||||
		const texelSize = 1.0 / ( sizeLod - 2 );
 | 
			
		||||
		const min = - texelSize;
 | 
			
		||||
		const max = 1 + texelSize;
 | 
			
		||||
		const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
 | 
			
		||||
 | 
			
		||||
		const cubeFaces = 6;
 | 
			
		||||
		const vertices = 6;
 | 
			
		||||
		const positionSize = 3;
 | 
			
		||||
		const uvSize = 2;
 | 
			
		||||
		const faceIndexSize = 1;
 | 
			
		||||
 | 
			
		||||
		const position = new Float32Array( positionSize * vertices * cubeFaces );
 | 
			
		||||
		const uv = new Float32Array( uvSize * vertices * cubeFaces );
 | 
			
		||||
		const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
 | 
			
		||||
 | 
			
		||||
		for ( let face = 0; face < cubeFaces; face ++ ) {
 | 
			
		||||
 | 
			
		||||
			const x = ( face % 3 ) * 2 / 3 - 1;
 | 
			
		||||
			const y = face > 2 ? 0 : - 1;
 | 
			
		||||
			const coordinates = [
 | 
			
		||||
				x, y, 0,
 | 
			
		||||
				x + 2 / 3, y, 0,
 | 
			
		||||
				x + 2 / 3, y + 1, 0,
 | 
			
		||||
				x, y, 0,
 | 
			
		||||
				x + 2 / 3, y + 1, 0,
 | 
			
		||||
				x, y + 1, 0
 | 
			
		||||
			];
 | 
			
		||||
 | 
			
		||||
			const faceIdx = _faceLib[ face ];
 | 
			
		||||
			position.set( coordinates, positionSize * vertices * faceIdx );
 | 
			
		||||
			uv.set( uv1, uvSize * vertices * faceIdx );
 | 
			
		||||
			const fill = [ faceIdx, faceIdx, faceIdx, faceIdx, faceIdx, faceIdx ];
 | 
			
		||||
			faceIndex.set( fill, faceIndexSize * vertices * faceIdx );
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		const planes = new BufferGeometry();
 | 
			
		||||
		planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
 | 
			
		||||
		planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
 | 
			
		||||
		planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
 | 
			
		||||
		lodPlanes.push( planes );
 | 
			
		||||
		lodMeshes.push( new Mesh( planes, null ) );
 | 
			
		||||
 | 
			
		||||
		if ( lod > LOD_MIN ) {
 | 
			
		||||
 | 
			
		||||
			lod --;
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return { lodPlanes, sizeLods, sigmas, lodMeshes };
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
function _createRenderTarget( width, height, params ) {
 | 
			
		||||
 | 
			
		||||
	const cubeUVRenderTarget = new RenderTarget( width, height, params );
 | 
			
		||||
	cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
 | 
			
		||||
	cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
 | 
			
		||||
	cubeUVRenderTarget.texture.isPMREMTexture = true;
 | 
			
		||||
	cubeUVRenderTarget.scissorTest = true;
 | 
			
		||||
	return cubeUVRenderTarget;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
function _setViewport( target, x, y, width, height ) {
 | 
			
		||||
 | 
			
		||||
	const viewY = target.height - height - y;
 | 
			
		||||
 | 
			
		||||
	target.viewport.set( x, viewY, width, height );
 | 
			
		||||
	target.scissor.set( x, viewY, width, height );
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
function _getMaterial() {
 | 
			
		||||
 | 
			
		||||
	const material = new NodeMaterial();
 | 
			
		||||
	material.depthTest = false;
 | 
			
		||||
	material.depthWrite = false;
 | 
			
		||||
	material.blending = NoBlending;
 | 
			
		||||
 | 
			
		||||
	return material;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
function _getBlurShader( lodMax, width, height ) {
 | 
			
		||||
 | 
			
		||||
	const weights = uniforms( new Array( MAX_SAMPLES ).fill( 0 ) );
 | 
			
		||||
	const poleAxis = uniform( new Vector3( 0, 1, 0 ) );
 | 
			
		||||
	const dTheta = uniform( 0 );
 | 
			
		||||
	const n = float( MAX_SAMPLES );
 | 
			
		||||
	const latitudinal = uniform( 0 ); // false, bool
 | 
			
		||||
	const samples = uniform( 1 ); // int
 | 
			
		||||
	const envMap = texture( null );
 | 
			
		||||
	const mipInt = uniform( 0 ); // int
 | 
			
		||||
	const CUBEUV_TEXEL_WIDTH = float( 1 / width );
 | 
			
		||||
	const CUBEUV_TEXEL_HEIGHT = float( 1 / height );
 | 
			
		||||
	const CUBEUV_MAX_MIP = float( lodMax );
 | 
			
		||||
 | 
			
		||||
	const materialUniforms = {
 | 
			
		||||
		n,
 | 
			
		||||
		latitudinal,
 | 
			
		||||
		weights,
 | 
			
		||||
		poleAxis,
 | 
			
		||||
		outputDirection,
 | 
			
		||||
		dTheta,
 | 
			
		||||
		samples,
 | 
			
		||||
		envMap,
 | 
			
		||||
		mipInt,
 | 
			
		||||
		CUBEUV_TEXEL_WIDTH,
 | 
			
		||||
		CUBEUV_TEXEL_HEIGHT,
 | 
			
		||||
		CUBEUV_MAX_MIP
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	const material = _getMaterial();
 | 
			
		||||
	material.uniforms = materialUniforms; // TODO: Move to outside of the material
 | 
			
		||||
	material.fragmentNode = blur( { ...materialUniforms, latitudinal: latitudinal.equal( 1 ) } );
 | 
			
		||||
 | 
			
		||||
	return material;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
function _getCubemapMaterial( envTexture ) {
 | 
			
		||||
 | 
			
		||||
	const material = _getMaterial();
 | 
			
		||||
	material.fragmentNode = cubeTexture( envTexture, outputDirection );
 | 
			
		||||
 | 
			
		||||
	return material;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
function _getEquirectMaterial( envTexture ) {
 | 
			
		||||
 | 
			
		||||
	const material = _getMaterial();
 | 
			
		||||
	material.fragmentNode = texture( envTexture, equirectUV( outputDirection ), 0 );
 | 
			
		||||
 | 
			
		||||
	return material;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
export default PMREMGenerator;
 | 
			
		||||
		Reference in New Issue
	
	Block a user