添加关照、全局等高线、修改图层问题
This commit is contained in:
773
static/sdk/three/jsm/renderers/common/extras/PMREMGenerator.js
Normal file
773
static/sdk/three/jsm/renderers/common/extras/PMREMGenerator.js
Normal file
@ -0,0 +1,773 @@
|
||||
import NodeMaterial from '../../../nodes/materials/NodeMaterial.js';
|
||||
import { getDirection, blur } from '../../../nodes/pmrem/PMREMUtils.js';
|
||||
import { equirectUV } from '../../../nodes/utils/EquirectUVNode.js';
|
||||
import { uniform } from '../../../nodes/core/UniformNode.js';
|
||||
import { uniforms } from '../../../nodes/accessors/UniformsNode.js';
|
||||
import { texture } from '../../../nodes/accessors/TextureNode.js';
|
||||
import { cubeTexture } from '../../../nodes/accessors/CubeTextureNode.js';
|
||||
import { float, vec3 } from '../../../nodes/shadernode/ShaderNode.js';
|
||||
import { uv } from '../../../nodes/accessors/UVNode.js';
|
||||
import { attribute } from '../../../nodes/core/AttributeNode.js';
|
||||
import {
|
||||
OrthographicCamera,
|
||||
Color,
|
||||
Vector3,
|
||||
BufferGeometry,
|
||||
BufferAttribute,
|
||||
RenderTarget,
|
||||
Mesh,
|
||||
CubeReflectionMapping,
|
||||
CubeRefractionMapping,
|
||||
CubeUVReflectionMapping,
|
||||
LinearFilter,
|
||||
NoBlending,
|
||||
RGBAFormat,
|
||||
HalfFloatType,
|
||||
BackSide,
|
||||
LinearSRGBColorSpace,
|
||||
PerspectiveCamera,
|
||||
MeshBasicMaterial,
|
||||
BoxGeometry
|
||||
} from 'three';
|
||||
|
||||
const LOD_MIN = 4;
|
||||
|
||||
// The standard deviations (radians) associated with the extra mips. These are
|
||||
// chosen to approximate a Trowbridge-Reitz distribution function times the
|
||||
// geometric shadowing function. These sigma values squared must match the
|
||||
// variance #defines in cube_uv_reflection_fragment.glsl.js.
|
||||
const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
|
||||
|
||||
// The maximum length of the blur for loop. Smaller sigmas will use fewer
|
||||
// samples and exit early, but not recompile the shader.
|
||||
const MAX_SAMPLES = 20;
|
||||
|
||||
const _flatCamera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
|
||||
const _cubeCamera = /*@__PURE__*/ new PerspectiveCamera( 90, 1 );
|
||||
const _clearColor = /*@__PURE__*/ new Color();
|
||||
let _oldTarget = null;
|
||||
let _oldActiveCubeFace = 0;
|
||||
let _oldActiveMipmapLevel = 0;
|
||||
|
||||
// Golden Ratio
|
||||
const PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
|
||||
const INV_PHI = 1 / PHI;
|
||||
|
||||
// Vertices of a dodecahedron (except the opposites, which represent the
|
||||
// same axis), used as axis directions evenly spread on a sphere.
|
||||
const _axisDirections = [
|
||||
/*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ),
|
||||
/*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ),
|
||||
/*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ),
|
||||
/*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ),
|
||||
/*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ),
|
||||
/*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ),
|
||||
/*@__PURE__*/ new Vector3( - 1, 1, - 1 ),
|
||||
/*@__PURE__*/ new Vector3( 1, 1, - 1 ),
|
||||
/*@__PURE__*/ new Vector3( - 1, 1, 1 ),
|
||||
/*@__PURE__*/ new Vector3( 1, 1, 1 )
|
||||
];
|
||||
|
||||
//
|
||||
|
||||
// WebGPU Face indices
|
||||
const _faceLib = [
|
||||
3, 1, 5,
|
||||
0, 4, 2
|
||||
];
|
||||
|
||||
const direction = getDirection( uv(), attribute( 'faceIndex' ) ).normalize();
|
||||
const outputDirection = vec3( direction.x, direction.y.negate(), direction.z );
|
||||
|
||||
/**
|
||||
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
|
||||
* (PMREM) from a cubeMap environment texture. This allows different levels of
|
||||
* blur to be quickly accessed based on material roughness. It is packed into a
|
||||
* special CubeUV format that allows us to perform custom interpolation so that
|
||||
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
|
||||
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
|
||||
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
|
||||
* higher roughness levels. In this way we maintain resolution to smoothly
|
||||
* interpolate diffuse lighting while limiting sampling computation.
|
||||
*
|
||||
* Paper: Fast, Accurate Image-Based Lighting
|
||||
* https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
|
||||
*/
|
||||
|
||||
class PMREMGenerator {
|
||||
|
||||
constructor( renderer ) {
|
||||
|
||||
this._renderer = renderer;
|
||||
this._pingPongRenderTarget = null;
|
||||
|
||||
this._lodMax = 0;
|
||||
this._cubeSize = 0;
|
||||
this._lodPlanes = [];
|
||||
this._sizeLods = [];
|
||||
this._sigmas = [];
|
||||
this._lodMeshes = [];
|
||||
|
||||
this._blurMaterial = null;
|
||||
this._cubemapMaterial = null;
|
||||
this._equirectMaterial = null;
|
||||
this._backgroundBox = null;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a PMREM from a supplied Scene, which can be faster than using an
|
||||
* image if networking bandwidth is low. Optional sigma specifies a blur radius
|
||||
* in radians to be applied to the scene before PMREM generation. Optional near
|
||||
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
|
||||
* is placed at the origin).
|
||||
*/
|
||||
fromScene( scene, sigma = 0, near = 0.1, far = 100 ) {
|
||||
|
||||
_oldTarget = this._renderer.getRenderTarget();
|
||||
_oldActiveCubeFace = this._renderer.getActiveCubeFace();
|
||||
_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
|
||||
|
||||
this._setSize( 256 );
|
||||
|
||||
const cubeUVRenderTarget = this._allocateTargets();
|
||||
cubeUVRenderTarget.depthBuffer = true;
|
||||
|
||||
this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
|
||||
|
||||
if ( sigma > 0 ) {
|
||||
|
||||
this._blur( cubeUVRenderTarget, 0, 0, sigma );
|
||||
|
||||
}
|
||||
|
||||
this._applyPMREM( cubeUVRenderTarget );
|
||||
|
||||
this._cleanup( cubeUVRenderTarget );
|
||||
|
||||
return cubeUVRenderTarget;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a PMREM from an equirectangular texture, which can be either LDR
|
||||
* or HDR. The ideal input image size is 1k (1024 x 512),
|
||||
* as this matches best with the 256 x 256 cubemap output.
|
||||
*/
|
||||
fromEquirectangular( equirectangular, renderTarget = null ) {
|
||||
|
||||
return this._fromTexture( equirectangular, renderTarget );
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a PMREM from an cubemap texture, which can be either LDR
|
||||
* or HDR. The ideal input cube size is 256 x 256,
|
||||
* as this matches best with the 256 x 256 cubemap output.
|
||||
*/
|
||||
fromCubemap( cubemap, renderTarget = null ) {
|
||||
|
||||
return this._fromTexture( cubemap, renderTarget );
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
|
||||
* your texture's network fetch for increased concurrency.
|
||||
*/
|
||||
compileCubemapShader() {
|
||||
|
||||
if ( this._cubemapMaterial === null ) {
|
||||
|
||||
this._cubemapMaterial = _getCubemapMaterial();
|
||||
this._compileMaterial( this._cubemapMaterial );
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
|
||||
* your texture's network fetch for increased concurrency.
|
||||
*/
|
||||
compileEquirectangularShader() {
|
||||
|
||||
if ( this._equirectMaterial === null ) {
|
||||
|
||||
this._equirectMaterial = _getEquirectMaterial();
|
||||
this._compileMaterial( this._equirectMaterial );
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
|
||||
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
|
||||
* one of them will cause any others to also become unusable.
|
||||
*/
|
||||
dispose() {
|
||||
|
||||
this._dispose();
|
||||
|
||||
if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose();
|
||||
if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose();
|
||||
if ( this._backgroundBox !== null ) {
|
||||
|
||||
this._backgroundBox.geometry.dispose();
|
||||
this._backgroundBox.material.dispose();
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// private interface
|
||||
|
||||
_setSize( cubeSize ) {
|
||||
|
||||
this._lodMax = Math.floor( Math.log2( cubeSize ) );
|
||||
this._cubeSize = Math.pow( 2, this._lodMax );
|
||||
|
||||
}
|
||||
|
||||
_dispose() {
|
||||
|
||||
if ( this._blurMaterial !== null ) this._blurMaterial.dispose();
|
||||
|
||||
if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose();
|
||||
|
||||
for ( let i = 0; i < this._lodPlanes.length; i ++ ) {
|
||||
|
||||
this._lodPlanes[ i ].dispose();
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
_cleanup( outputTarget ) {
|
||||
|
||||
this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel );
|
||||
outputTarget.scissorTest = false;
|
||||
_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
|
||||
|
||||
}
|
||||
|
||||
_fromTexture( texture, renderTarget ) {
|
||||
|
||||
if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) {
|
||||
|
||||
this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) );
|
||||
|
||||
} else { // Equirectangular
|
||||
|
||||
this._setSize( texture.image.width / 4 );
|
||||
|
||||
}
|
||||
|
||||
_oldTarget = this._renderer.getRenderTarget();
|
||||
_oldActiveCubeFace = this._renderer.getActiveCubeFace();
|
||||
_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
|
||||
|
||||
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
|
||||
this._textureToCubeUV( texture, cubeUVRenderTarget );
|
||||
this._applyPMREM( cubeUVRenderTarget );
|
||||
this._cleanup( cubeUVRenderTarget );
|
||||
|
||||
return cubeUVRenderTarget;
|
||||
|
||||
}
|
||||
|
||||
_allocateTargets() {
|
||||
|
||||
const width = 3 * Math.max( this._cubeSize, 16 * 7 );
|
||||
const height = 4 * this._cubeSize;
|
||||
|
||||
const params = {
|
||||
magFilter: LinearFilter,
|
||||
minFilter: LinearFilter,
|
||||
generateMipmaps: false,
|
||||
type: HalfFloatType,
|
||||
format: RGBAFormat,
|
||||
colorSpace: LinearSRGBColorSpace,
|
||||
//depthBuffer: false
|
||||
};
|
||||
|
||||
const cubeUVRenderTarget = _createRenderTarget( width, height, params );
|
||||
|
||||
if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) {
|
||||
|
||||
if ( this._pingPongRenderTarget !== null ) {
|
||||
|
||||
this._dispose();
|
||||
|
||||
}
|
||||
|
||||
this._pingPongRenderTarget = _createRenderTarget( width, height, params );
|
||||
|
||||
const { _lodMax } = this;
|
||||
( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas, lodMeshes: this._lodMeshes } = _createPlanes( _lodMax ) );
|
||||
|
||||
this._blurMaterial = _getBlurShader( _lodMax, width, height );
|
||||
|
||||
}
|
||||
|
||||
return cubeUVRenderTarget;
|
||||
|
||||
}
|
||||
|
||||
_compileMaterial( material ) {
|
||||
|
||||
const tmpMesh = this._lodMeshes[ 0 ];
|
||||
tmpMesh.material = material;
|
||||
|
||||
this._renderer.compile( tmpMesh, _flatCamera );
|
||||
|
||||
}
|
||||
|
||||
_sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
|
||||
|
||||
const cubeCamera = _cubeCamera;
|
||||
cubeCamera.near = near;
|
||||
cubeCamera.far = far;
|
||||
|
||||
// px, py, pz, nx, ny, nz
|
||||
const upSign = [ - 1, 1, - 1, - 1, - 1, - 1 ];
|
||||
const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ];
|
||||
|
||||
const renderer = this._renderer;
|
||||
|
||||
const originalAutoClear = renderer.autoClear;
|
||||
|
||||
renderer.getClearColor( _clearColor );
|
||||
|
||||
renderer.autoClear = false;
|
||||
|
||||
let backgroundBox = this._backgroundBox;
|
||||
|
||||
if ( backgroundBox === null ) {
|
||||
|
||||
const backgroundMaterial = new MeshBasicMaterial( {
|
||||
name: 'PMREM.Background',
|
||||
side: BackSide,
|
||||
depthWrite: false,
|
||||
depthTest: false
|
||||
} );
|
||||
|
||||
backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial );
|
||||
|
||||
}
|
||||
|
||||
let useSolidColor = false;
|
||||
const background = scene.background;
|
||||
|
||||
if ( background ) {
|
||||
|
||||
if ( background.isColor ) {
|
||||
|
||||
backgroundBox.material.color.copy( background );
|
||||
scene.background = null;
|
||||
useSolidColor = true;
|
||||
|
||||
}
|
||||
|
||||
} else {
|
||||
|
||||
backgroundBox.material.color.copy( _clearColor );
|
||||
useSolidColor = true;
|
||||
|
||||
}
|
||||
|
||||
renderer.setRenderTarget( cubeUVRenderTarget );
|
||||
|
||||
renderer.clear();
|
||||
|
||||
if ( useSolidColor ) {
|
||||
|
||||
renderer.render( backgroundBox, cubeCamera );
|
||||
|
||||
}
|
||||
|
||||
for ( let i = 0; i < 6; i ++ ) {
|
||||
|
||||
const col = i % 3;
|
||||
|
||||
if ( col === 0 ) {
|
||||
|
||||
cubeCamera.up.set( 0, upSign[ i ], 0 );
|
||||
cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
|
||||
|
||||
} else if ( col === 1 ) {
|
||||
|
||||
cubeCamera.up.set( 0, 0, upSign[ i ] );
|
||||
cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
|
||||
|
||||
} else {
|
||||
|
||||
cubeCamera.up.set( 0, upSign[ i ], 0 );
|
||||
cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
|
||||
|
||||
}
|
||||
|
||||
const size = this._cubeSize;
|
||||
|
||||
_setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size );
|
||||
|
||||
renderer.render( scene, cubeCamera );
|
||||
|
||||
}
|
||||
|
||||
renderer.autoClear = originalAutoClear;
|
||||
scene.background = background;
|
||||
|
||||
}
|
||||
|
||||
_textureToCubeUV( texture, cubeUVRenderTarget ) {
|
||||
|
||||
const renderer = this._renderer;
|
||||
|
||||
const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping );
|
||||
|
||||
if ( isCubeTexture ) {
|
||||
|
||||
if ( this._cubemapMaterial === null ) {
|
||||
|
||||
this._cubemapMaterial = _getCubemapMaterial( texture );
|
||||
|
||||
}
|
||||
|
||||
} else {
|
||||
|
||||
if ( this._equirectMaterial === null ) {
|
||||
|
||||
this._equirectMaterial = _getEquirectMaterial( texture );
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial;
|
||||
material.fragmentNode.value = texture;
|
||||
|
||||
const mesh = this._lodMeshes[ 0 ];
|
||||
mesh.material = material;
|
||||
|
||||
const size = this._cubeSize;
|
||||
|
||||
_setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size );
|
||||
|
||||
renderer.setRenderTarget( cubeUVRenderTarget );
|
||||
renderer.render( mesh, _flatCamera );
|
||||
|
||||
}
|
||||
|
||||
_applyPMREM( cubeUVRenderTarget ) {
|
||||
|
||||
const renderer = this._renderer;
|
||||
const autoClear = renderer.autoClear;
|
||||
renderer.autoClear = false;
|
||||
const n = this._lodPlanes.length;
|
||||
|
||||
for ( let i = 1; i < n; i ++ ) {
|
||||
|
||||
const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] );
|
||||
|
||||
const poleAxis = _axisDirections[ ( n - i - 1 ) % _axisDirections.length ];
|
||||
|
||||
this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
|
||||
|
||||
}
|
||||
|
||||
renderer.autoClear = autoClear;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
|
||||
* vertically and horizontally, but this breaks down on a cube. Here we apply
|
||||
* the blur latitudinally (around the poles), and then longitudinally (towards
|
||||
* the poles) to approximate the orthogonally-separable blur. It is least
|
||||
* accurate at the poles, but still does a decent job.
|
||||
*/
|
||||
_blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
|
||||
|
||||
const pingPongRenderTarget = this._pingPongRenderTarget;
|
||||
|
||||
this._halfBlur(
|
||||
cubeUVRenderTarget,
|
||||
pingPongRenderTarget,
|
||||
lodIn,
|
||||
lodOut,
|
||||
sigma,
|
||||
'latitudinal',
|
||||
poleAxis );
|
||||
|
||||
this._halfBlur(
|
||||
pingPongRenderTarget,
|
||||
cubeUVRenderTarget,
|
||||
lodOut,
|
||||
lodOut,
|
||||
sigma,
|
||||
'longitudinal',
|
||||
poleAxis );
|
||||
|
||||
}
|
||||
|
||||
_halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
|
||||
|
||||
const renderer = this._renderer;
|
||||
const blurMaterial = this._blurMaterial;
|
||||
|
||||
if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
|
||||
|
||||
console.error( 'blur direction must be either latitudinal or longitudinal!' );
|
||||
|
||||
}
|
||||
|
||||
// Number of standard deviations at which to cut off the discrete approximation.
|
||||
const STANDARD_DEVIATIONS = 3;
|
||||
|
||||
const blurMesh = this._lodMeshes[ lodOut ];
|
||||
blurMesh.material = blurMaterial;
|
||||
|
||||
const blurUniforms = blurMaterial.uniforms;
|
||||
|
||||
const pixels = this._sizeLods[ lodIn ] - 1;
|
||||
const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
|
||||
const sigmaPixels = sigmaRadians / radiansPerPixel;
|
||||
const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
|
||||
|
||||
if ( samples > MAX_SAMPLES ) {
|
||||
|
||||
console.warn( `sigmaRadians, ${
|
||||
sigmaRadians}, is too large and will clip, as it requested ${
|
||||
samples} samples when the maximum is set to ${MAX_SAMPLES}` );
|
||||
|
||||
}
|
||||
|
||||
const weights = [];
|
||||
let sum = 0;
|
||||
|
||||
for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
|
||||
|
||||
const x = i / sigmaPixels;
|
||||
const weight = Math.exp( - x * x / 2 );
|
||||
weights.push( weight );
|
||||
|
||||
if ( i === 0 ) {
|
||||
|
||||
sum += weight;
|
||||
|
||||
} else if ( i < samples ) {
|
||||
|
||||
sum += 2 * weight;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
for ( let i = 0; i < weights.length; i ++ ) {
|
||||
|
||||
weights[ i ] = weights[ i ] / sum;
|
||||
|
||||
}
|
||||
|
||||
targetIn.texture.frame = ( targetIn.texture.frame || 0 ) + 1;
|
||||
|
||||
blurUniforms.envMap.value = targetIn.texture;
|
||||
blurUniforms.samples.value = samples;
|
||||
blurUniforms.weights.array = weights;
|
||||
blurUniforms.latitudinal.value = direction === 'latitudinal' ? 1 : 0;
|
||||
|
||||
if ( poleAxis ) {
|
||||
|
||||
blurUniforms.poleAxis.value = poleAxis;
|
||||
|
||||
}
|
||||
|
||||
const { _lodMax } = this;
|
||||
blurUniforms.dTheta.value = radiansPerPixel;
|
||||
blurUniforms.mipInt.value = _lodMax - lodIn;
|
||||
|
||||
const outputSize = this._sizeLods[ lodOut ];
|
||||
const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 );
|
||||
const y = 4 * ( this._cubeSize - outputSize );
|
||||
|
||||
_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
|
||||
renderer.setRenderTarget( targetOut );
|
||||
renderer.render( blurMesh, _flatCamera );
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
function _createPlanes( lodMax ) {
|
||||
|
||||
const lodPlanes = [];
|
||||
const sizeLods = [];
|
||||
const sigmas = [];
|
||||
const lodMeshes = [];
|
||||
|
||||
let lod = lodMax;
|
||||
|
||||
const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
|
||||
|
||||
for ( let i = 0; i < totalLods; i ++ ) {
|
||||
|
||||
const sizeLod = Math.pow( 2, lod );
|
||||
sizeLods.push( sizeLod );
|
||||
let sigma = 1.0 / sizeLod;
|
||||
|
||||
if ( i > lodMax - LOD_MIN ) {
|
||||
|
||||
sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ];
|
||||
|
||||
} else if ( i === 0 ) {
|
||||
|
||||
sigma = 0;
|
||||
|
||||
}
|
||||
|
||||
sigmas.push( sigma );
|
||||
|
||||
const texelSize = 1.0 / ( sizeLod - 2 );
|
||||
const min = - texelSize;
|
||||
const max = 1 + texelSize;
|
||||
const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
|
||||
|
||||
const cubeFaces = 6;
|
||||
const vertices = 6;
|
||||
const positionSize = 3;
|
||||
const uvSize = 2;
|
||||
const faceIndexSize = 1;
|
||||
|
||||
const position = new Float32Array( positionSize * vertices * cubeFaces );
|
||||
const uv = new Float32Array( uvSize * vertices * cubeFaces );
|
||||
const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
|
||||
|
||||
for ( let face = 0; face < cubeFaces; face ++ ) {
|
||||
|
||||
const x = ( face % 3 ) * 2 / 3 - 1;
|
||||
const y = face > 2 ? 0 : - 1;
|
||||
const coordinates = [
|
||||
x, y, 0,
|
||||
x + 2 / 3, y, 0,
|
||||
x + 2 / 3, y + 1, 0,
|
||||
x, y, 0,
|
||||
x + 2 / 3, y + 1, 0,
|
||||
x, y + 1, 0
|
||||
];
|
||||
|
||||
const faceIdx = _faceLib[ face ];
|
||||
position.set( coordinates, positionSize * vertices * faceIdx );
|
||||
uv.set( uv1, uvSize * vertices * faceIdx );
|
||||
const fill = [ faceIdx, faceIdx, faceIdx, faceIdx, faceIdx, faceIdx ];
|
||||
faceIndex.set( fill, faceIndexSize * vertices * faceIdx );
|
||||
|
||||
}
|
||||
|
||||
const planes = new BufferGeometry();
|
||||
planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
|
||||
planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
|
||||
planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
|
||||
lodPlanes.push( planes );
|
||||
lodMeshes.push( new Mesh( planes, null ) );
|
||||
|
||||
if ( lod > LOD_MIN ) {
|
||||
|
||||
lod --;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return { lodPlanes, sizeLods, sigmas, lodMeshes };
|
||||
|
||||
}
|
||||
|
||||
function _createRenderTarget( width, height, params ) {
|
||||
|
||||
const cubeUVRenderTarget = new RenderTarget( width, height, params );
|
||||
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
|
||||
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
|
||||
cubeUVRenderTarget.texture.isPMREMTexture = true;
|
||||
cubeUVRenderTarget.scissorTest = true;
|
||||
return cubeUVRenderTarget;
|
||||
|
||||
}
|
||||
|
||||
function _setViewport( target, x, y, width, height ) {
|
||||
|
||||
const viewY = target.height - height - y;
|
||||
|
||||
target.viewport.set( x, viewY, width, height );
|
||||
target.scissor.set( x, viewY, width, height );
|
||||
|
||||
}
|
||||
|
||||
function _getMaterial() {
|
||||
|
||||
const material = new NodeMaterial();
|
||||
material.depthTest = false;
|
||||
material.depthWrite = false;
|
||||
material.blending = NoBlending;
|
||||
|
||||
return material;
|
||||
|
||||
}
|
||||
|
||||
function _getBlurShader( lodMax, width, height ) {
|
||||
|
||||
const weights = uniforms( new Array( MAX_SAMPLES ).fill( 0 ) );
|
||||
const poleAxis = uniform( new Vector3( 0, 1, 0 ) );
|
||||
const dTheta = uniform( 0 );
|
||||
const n = float( MAX_SAMPLES );
|
||||
const latitudinal = uniform( 0 ); // false, bool
|
||||
const samples = uniform( 1 ); // int
|
||||
const envMap = texture( null );
|
||||
const mipInt = uniform( 0 ); // int
|
||||
const CUBEUV_TEXEL_WIDTH = float( 1 / width );
|
||||
const CUBEUV_TEXEL_HEIGHT = float( 1 / height );
|
||||
const CUBEUV_MAX_MIP = float( lodMax );
|
||||
|
||||
const materialUniforms = {
|
||||
n,
|
||||
latitudinal,
|
||||
weights,
|
||||
poleAxis,
|
||||
outputDirection,
|
||||
dTheta,
|
||||
samples,
|
||||
envMap,
|
||||
mipInt,
|
||||
CUBEUV_TEXEL_WIDTH,
|
||||
CUBEUV_TEXEL_HEIGHT,
|
||||
CUBEUV_MAX_MIP
|
||||
};
|
||||
|
||||
const material = _getMaterial();
|
||||
material.uniforms = materialUniforms; // TODO: Move to outside of the material
|
||||
material.fragmentNode = blur( { ...materialUniforms, latitudinal: latitudinal.equal( 1 ) } );
|
||||
|
||||
return material;
|
||||
|
||||
}
|
||||
|
||||
function _getCubemapMaterial( envTexture ) {
|
||||
|
||||
const material = _getMaterial();
|
||||
material.fragmentNode = cubeTexture( envTexture, outputDirection );
|
||||
|
||||
return material;
|
||||
|
||||
}
|
||||
|
||||
function _getEquirectMaterial( envTexture ) {
|
||||
|
||||
const material = _getMaterial();
|
||||
material.fragmentNode = texture( envTexture, equirectUV( outputDirection ), 0 );
|
||||
|
||||
return material;
|
||||
|
||||
}
|
||||
|
||||
export default PMREMGenerator;
|
Reference in New Issue
Block a user