774 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			774 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| import NodeMaterial from '../../../nodes/materials/NodeMaterial.js';
 | |
| import { getDirection, blur } from '../../../nodes/pmrem/PMREMUtils.js';
 | |
| import { equirectUV } from '../../../nodes/utils/EquirectUVNode.js';
 | |
| import { uniform } from '../../../nodes/core/UniformNode.js';
 | |
| import { uniforms } from '../../../nodes/accessors/UniformsNode.js';
 | |
| import { texture } from '../../../nodes/accessors/TextureNode.js';
 | |
| import { cubeTexture } from '../../../nodes/accessors/CubeTextureNode.js';
 | |
| import { float, vec3 } from '../../../nodes/shadernode/ShaderNode.js';
 | |
| import { uv } from '../../../nodes/accessors/UVNode.js';
 | |
| import { attribute } from '../../../nodes/core/AttributeNode.js';
 | |
| import {
 | |
| 	OrthographicCamera,
 | |
| 	Color,
 | |
| 	Vector3,
 | |
| 	BufferGeometry,
 | |
| 	BufferAttribute,
 | |
| 	RenderTarget,
 | |
| 	Mesh,
 | |
| 	CubeReflectionMapping,
 | |
| 	CubeRefractionMapping,
 | |
| 	CubeUVReflectionMapping,
 | |
| 	LinearFilter,
 | |
| 	NoBlending,
 | |
| 	RGBAFormat,
 | |
| 	HalfFloatType,
 | |
| 	BackSide,
 | |
| 	LinearSRGBColorSpace,
 | |
| 	PerspectiveCamera,
 | |
| 	MeshBasicMaterial,
 | |
| 	BoxGeometry
 | |
| } from 'three';
 | |
| 
 | |
| const LOD_MIN = 4;
 | |
| 
 | |
| // The standard deviations (radians) associated with the extra mips. These are
 | |
| // chosen to approximate a Trowbridge-Reitz distribution function times the
 | |
| // geometric shadowing function. These sigma values squared must match the
 | |
| // variance #defines in cube_uv_reflection_fragment.glsl.js.
 | |
| const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
 | |
| 
 | |
| // The maximum length of the blur for loop. Smaller sigmas will use fewer
 | |
| // samples and exit early, but not recompile the shader.
 | |
| const MAX_SAMPLES = 20;
 | |
| 
 | |
| const _flatCamera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
 | |
| const _cubeCamera = /*@__PURE__*/ new PerspectiveCamera( 90, 1 );
 | |
| const _clearColor = /*@__PURE__*/ new Color();
 | |
| let _oldTarget = null;
 | |
| let _oldActiveCubeFace = 0;
 | |
| let _oldActiveMipmapLevel = 0;
 | |
| 
 | |
| // Golden Ratio
 | |
| const PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
 | |
| const INV_PHI = 1 / PHI;
 | |
| 
 | |
| // Vertices of a dodecahedron (except the opposites, which represent the
 | |
| // same axis), used as axis directions evenly spread on a sphere.
 | |
| const _axisDirections = [
 | |
| 	/*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ),
 | |
| 	/*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ),
 | |
| 	/*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ),
 | |
| 	/*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ),
 | |
| 	/*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ),
 | |
| 	/*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ),
 | |
| 	/*@__PURE__*/ new Vector3( - 1, 1, - 1 ),
 | |
| 	/*@__PURE__*/ new Vector3( 1, 1, - 1 ),
 | |
| 	/*@__PURE__*/ new Vector3( - 1, 1, 1 ),
 | |
| 	/*@__PURE__*/ new Vector3( 1, 1, 1 )
 | |
| ];
 | |
| 
 | |
| //
 | |
| 
 | |
| // WebGPU Face indices
 | |
| const _faceLib = [
 | |
| 	3, 1, 5,
 | |
| 	0, 4, 2
 | |
| ];
 | |
| 
 | |
| const direction = getDirection( uv(), attribute( 'faceIndex' ) ).normalize();
 | |
| const outputDirection = vec3( direction.x, direction.y.negate(), direction.z );
 | |
| 
 | |
| /**
 | |
|  * This class generates a Prefiltered, Mipmapped Radiance Environment Map
 | |
|  * (PMREM) from a cubeMap environment texture. This allows different levels of
 | |
|  * blur to be quickly accessed based on material roughness. It is packed into a
 | |
|  * special CubeUV format that allows us to perform custom interpolation so that
 | |
|  * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
 | |
|  * chain, it only goes down to the LOD_MIN level (above), and then creates extra
 | |
|  * even more filtered 'mips' at the same LOD_MIN resolution, associated with
 | |
|  * higher roughness levels. In this way we maintain resolution to smoothly
 | |
|  * interpolate diffuse lighting while limiting sampling computation.
 | |
|  *
 | |
|  * Paper: Fast, Accurate Image-Based Lighting
 | |
|  * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
 | |
| */
 | |
| 
 | |
| class PMREMGenerator {
 | |
| 
 | |
| 	constructor( renderer ) {
 | |
| 
 | |
| 		this._renderer = renderer;
 | |
| 		this._pingPongRenderTarget = null;
 | |
| 
 | |
| 		this._lodMax = 0;
 | |
| 		this._cubeSize = 0;
 | |
| 		this._lodPlanes = [];
 | |
| 		this._sizeLods = [];
 | |
| 		this._sigmas = [];
 | |
| 		this._lodMeshes = [];
 | |
| 
 | |
| 		this._blurMaterial = null;
 | |
| 		this._cubemapMaterial = null;
 | |
| 		this._equirectMaterial = null;
 | |
| 		this._backgroundBox = null;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * Generates a PMREM from a supplied Scene, which can be faster than using an
 | |
| 	 * image if networking bandwidth is low. Optional sigma specifies a blur radius
 | |
| 	 * in radians to be applied to the scene before PMREM generation. Optional near
 | |
| 	 * and far planes ensure the scene is rendered in its entirety (the cubeCamera
 | |
| 	 * is placed at the origin).
 | |
| 	 */
 | |
| 	fromScene( scene, sigma = 0, near = 0.1, far = 100 ) {
 | |
| 
 | |
| 		_oldTarget = this._renderer.getRenderTarget();
 | |
| 		_oldActiveCubeFace = this._renderer.getActiveCubeFace();
 | |
| 		_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
 | |
| 
 | |
| 		this._setSize( 256 );
 | |
| 
 | |
| 		const cubeUVRenderTarget = this._allocateTargets();
 | |
| 		cubeUVRenderTarget.depthBuffer = true;
 | |
| 
 | |
| 		this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
 | |
| 
 | |
| 		if ( sigma > 0 ) {
 | |
| 
 | |
| 			this._blur( cubeUVRenderTarget, 0, 0, sigma );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		this._applyPMREM( cubeUVRenderTarget );
 | |
| 
 | |
| 		this._cleanup( cubeUVRenderTarget );
 | |
| 
 | |
| 		return cubeUVRenderTarget;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * Generates a PMREM from an equirectangular texture, which can be either LDR
 | |
| 	 * or HDR. The ideal input image size is 1k (1024 x 512),
 | |
| 	 * as this matches best with the 256 x 256 cubemap output.
 | |
| 	 */
 | |
| 	fromEquirectangular( equirectangular, renderTarget = null ) {
 | |
| 
 | |
| 		return this._fromTexture( equirectangular, renderTarget );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * Generates a PMREM from an cubemap texture, which can be either LDR
 | |
| 	 * or HDR. The ideal input cube size is 256 x 256,
 | |
| 	 * as this matches best with the 256 x 256 cubemap output.
 | |
| 	 */
 | |
| 	fromCubemap( cubemap, renderTarget = null ) {
 | |
| 
 | |
| 		return this._fromTexture( cubemap, renderTarget );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
 | |
| 	 * your texture's network fetch for increased concurrency.
 | |
| 	 */
 | |
| 	compileCubemapShader() {
 | |
| 
 | |
| 		if ( this._cubemapMaterial === null ) {
 | |
| 
 | |
| 			this._cubemapMaterial = _getCubemapMaterial();
 | |
| 			this._compileMaterial( this._cubemapMaterial );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
 | |
| 	 * your texture's network fetch for increased concurrency.
 | |
| 	 */
 | |
| 	compileEquirectangularShader() {
 | |
| 
 | |
| 		if ( this._equirectMaterial === null ) {
 | |
| 
 | |
| 			this._equirectMaterial = _getEquirectMaterial();
 | |
| 			this._compileMaterial( this._equirectMaterial );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
 | |
| 	 * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
 | |
| 	 * one of them will cause any others to also become unusable.
 | |
| 	 */
 | |
| 	dispose() {
 | |
| 
 | |
| 		this._dispose();
 | |
| 
 | |
| 		if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose();
 | |
| 		if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose();
 | |
| 		if ( this._backgroundBox !== null ) {
 | |
| 
 | |
| 			this._backgroundBox.geometry.dispose();
 | |
| 			this._backgroundBox.material.dispose();
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	// private interface
 | |
| 
 | |
| 	_setSize( cubeSize ) {
 | |
| 
 | |
| 		this._lodMax = Math.floor( Math.log2( cubeSize ) );
 | |
| 		this._cubeSize = Math.pow( 2, this._lodMax );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_dispose() {
 | |
| 
 | |
| 		if ( this._blurMaterial !== null ) this._blurMaterial.dispose();
 | |
| 
 | |
| 		if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose();
 | |
| 
 | |
| 		for ( let i = 0; i < this._lodPlanes.length; i ++ ) {
 | |
| 
 | |
| 			this._lodPlanes[ i ].dispose();
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_cleanup( outputTarget ) {
 | |
| 
 | |
| 		this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel );
 | |
| 		outputTarget.scissorTest = false;
 | |
| 		_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_fromTexture( texture, renderTarget ) {
 | |
| 
 | |
| 		if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) {
 | |
| 
 | |
| 			this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) );
 | |
| 
 | |
| 		} else { // Equirectangular
 | |
| 
 | |
| 			this._setSize( texture.image.width / 4 );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		_oldTarget = this._renderer.getRenderTarget();
 | |
| 		_oldActiveCubeFace = this._renderer.getActiveCubeFace();
 | |
| 		_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
 | |
| 
 | |
| 		const cubeUVRenderTarget = renderTarget || this._allocateTargets();
 | |
| 		this._textureToCubeUV( texture, cubeUVRenderTarget );
 | |
| 		this._applyPMREM( cubeUVRenderTarget );
 | |
| 		this._cleanup( cubeUVRenderTarget );
 | |
| 
 | |
| 		return cubeUVRenderTarget;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_allocateTargets() {
 | |
| 
 | |
| 		const width = 3 * Math.max( this._cubeSize, 16 * 7 );
 | |
| 		const height = 4 * this._cubeSize;
 | |
| 
 | |
| 		const params = {
 | |
| 			magFilter: LinearFilter,
 | |
| 			minFilter: LinearFilter,
 | |
| 			generateMipmaps: false,
 | |
| 			type: HalfFloatType,
 | |
| 			format: RGBAFormat,
 | |
| 			colorSpace: LinearSRGBColorSpace,
 | |
| 			//depthBuffer: false
 | |
| 		};
 | |
| 
 | |
| 		const cubeUVRenderTarget = _createRenderTarget( width, height, params );
 | |
| 
 | |
| 		if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) {
 | |
| 
 | |
| 			if ( this._pingPongRenderTarget !== null ) {
 | |
| 
 | |
| 				this._dispose();
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 			this._pingPongRenderTarget = _createRenderTarget( width, height, params );
 | |
| 
 | |
| 			const { _lodMax } = this;
 | |
| 			( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas, lodMeshes: this._lodMeshes } = _createPlanes( _lodMax ) );
 | |
| 
 | |
| 			this._blurMaterial = _getBlurShader( _lodMax, width, height );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		return cubeUVRenderTarget;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_compileMaterial( material ) {
 | |
| 
 | |
| 		const tmpMesh = this._lodMeshes[ 0 ];
 | |
| 		tmpMesh.material = material;
 | |
| 
 | |
| 		this._renderer.compile( tmpMesh, _flatCamera );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
 | |
| 
 | |
| 		const cubeCamera = _cubeCamera;
 | |
| 		cubeCamera.near = near;
 | |
| 		cubeCamera.far = far;
 | |
| 
 | |
| 		// px, py, pz, nx, ny, nz
 | |
| 		const upSign = [ - 1, 1, - 1, - 1, - 1, - 1 ];
 | |
| 		const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ];
 | |
| 
 | |
| 		const renderer = this._renderer;
 | |
| 
 | |
| 		const originalAutoClear = renderer.autoClear;
 | |
| 
 | |
| 		renderer.getClearColor( _clearColor );
 | |
| 
 | |
| 		renderer.autoClear = false;
 | |
| 
 | |
| 		let backgroundBox = this._backgroundBox;
 | |
| 
 | |
| 		if ( backgroundBox === null ) {
 | |
| 
 | |
| 			const backgroundMaterial = new MeshBasicMaterial( {
 | |
| 				name: 'PMREM.Background',
 | |
| 				side: BackSide,
 | |
| 				depthWrite: false,
 | |
| 				depthTest: false
 | |
| 			} );
 | |
| 
 | |
| 			backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		let useSolidColor = false;
 | |
| 		const background = scene.background;
 | |
| 
 | |
| 		if ( background ) {
 | |
| 
 | |
| 			if ( background.isColor ) {
 | |
| 
 | |
| 				backgroundBox.material.color.copy( background );
 | |
| 				scene.background = null;
 | |
| 				useSolidColor = true;
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| 			backgroundBox.material.color.copy( _clearColor );
 | |
| 			useSolidColor = true;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		renderer.setRenderTarget( cubeUVRenderTarget );
 | |
| 
 | |
| 		renderer.clear();
 | |
| 
 | |
| 		if ( useSolidColor ) {
 | |
| 
 | |
| 			renderer.render( backgroundBox, cubeCamera );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		for ( let i = 0; i < 6; i ++ ) {
 | |
| 
 | |
| 			const col = i % 3;
 | |
| 
 | |
| 			if ( col === 0 ) {
 | |
| 
 | |
| 				cubeCamera.up.set( 0, upSign[ i ], 0 );
 | |
| 				cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
 | |
| 
 | |
| 			} else if ( col === 1 ) {
 | |
| 
 | |
| 				cubeCamera.up.set( 0, 0, upSign[ i ] );
 | |
| 				cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
 | |
| 
 | |
| 			} else {
 | |
| 
 | |
| 				cubeCamera.up.set( 0, upSign[ i ], 0 );
 | |
| 				cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 			const size = this._cubeSize;
 | |
| 
 | |
| 			_setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size );
 | |
| 
 | |
| 			renderer.render( scene, cubeCamera );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		renderer.autoClear = originalAutoClear;
 | |
| 		scene.background = background;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_textureToCubeUV( texture, cubeUVRenderTarget ) {
 | |
| 
 | |
| 		const renderer = this._renderer;
 | |
| 
 | |
| 		const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping );
 | |
| 
 | |
| 		if ( isCubeTexture ) {
 | |
| 
 | |
| 			if ( this._cubemapMaterial === null ) {
 | |
| 
 | |
| 				this._cubemapMaterial = _getCubemapMaterial( texture );
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| 			if ( this._equirectMaterial === null ) {
 | |
| 
 | |
| 				this._equirectMaterial = _getEquirectMaterial( texture );
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial;
 | |
| 		material.fragmentNode.value = texture;
 | |
| 
 | |
| 		const mesh = this._lodMeshes[ 0 ];
 | |
| 		mesh.material = material;
 | |
| 
 | |
| 		const size = this._cubeSize;
 | |
| 
 | |
| 		_setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size );
 | |
| 
 | |
| 		renderer.setRenderTarget( cubeUVRenderTarget );
 | |
| 		renderer.render( mesh, _flatCamera );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_applyPMREM( cubeUVRenderTarget ) {
 | |
| 
 | |
| 		const renderer = this._renderer;
 | |
| 		const autoClear = renderer.autoClear;
 | |
| 		renderer.autoClear = false;
 | |
| 		const n = this._lodPlanes.length;
 | |
| 
 | |
| 		for ( let i = 1; i < n; i ++ ) {
 | |
| 
 | |
| 			const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] );
 | |
| 
 | |
| 			const poleAxis = _axisDirections[ ( n - i - 1 ) % _axisDirections.length ];
 | |
| 
 | |
| 			this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		renderer.autoClear = autoClear;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * This is a two-pass Gaussian blur for a cubemap. Normally this is done
 | |
| 	 * vertically and horizontally, but this breaks down on a cube. Here we apply
 | |
| 	 * the blur latitudinally (around the poles), and then longitudinally (towards
 | |
| 	 * the poles) to approximate the orthogonally-separable blur. It is least
 | |
| 	 * accurate at the poles, but still does a decent job.
 | |
| 	 */
 | |
| 	_blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
 | |
| 
 | |
| 		const pingPongRenderTarget = this._pingPongRenderTarget;
 | |
| 
 | |
| 		this._halfBlur(
 | |
| 			cubeUVRenderTarget,
 | |
| 			pingPongRenderTarget,
 | |
| 			lodIn,
 | |
| 			lodOut,
 | |
| 			sigma,
 | |
| 			'latitudinal',
 | |
| 			poleAxis );
 | |
| 
 | |
| 		this._halfBlur(
 | |
| 			pingPongRenderTarget,
 | |
| 			cubeUVRenderTarget,
 | |
| 			lodOut,
 | |
| 			lodOut,
 | |
| 			sigma,
 | |
| 			'longitudinal',
 | |
| 			poleAxis );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
 | |
| 
 | |
| 		const renderer = this._renderer;
 | |
| 		const blurMaterial = this._blurMaterial;
 | |
| 
 | |
| 		if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
 | |
| 
 | |
| 			console.error( 'blur direction must be either latitudinal or longitudinal!' );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		// Number of standard deviations at which to cut off the discrete approximation.
 | |
| 		const STANDARD_DEVIATIONS = 3;
 | |
| 
 | |
| 		const blurMesh = this._lodMeshes[ lodOut ];
 | |
| 		blurMesh.material = blurMaterial;
 | |
| 
 | |
| 		const blurUniforms = blurMaterial.uniforms;
 | |
| 
 | |
| 		const pixels = this._sizeLods[ lodIn ] - 1;
 | |
| 		const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
 | |
| 		const sigmaPixels = sigmaRadians / radiansPerPixel;
 | |
| 		const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
 | |
| 
 | |
| 		if ( samples > MAX_SAMPLES ) {
 | |
| 
 | |
| 			console.warn( `sigmaRadians, ${
 | |
| 				sigmaRadians}, is too large and will clip, as it requested ${
 | |
| 				samples} samples when the maximum is set to ${MAX_SAMPLES}` );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		const weights = [];
 | |
| 		let sum = 0;
 | |
| 
 | |
| 		for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
 | |
| 
 | |
| 			const x = i / sigmaPixels;
 | |
| 			const weight = Math.exp( - x * x / 2 );
 | |
| 			weights.push( weight );
 | |
| 
 | |
| 			if ( i === 0 ) {
 | |
| 
 | |
| 				sum += weight;
 | |
| 
 | |
| 			} else if ( i < samples ) {
 | |
| 
 | |
| 				sum += 2 * weight;
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		for ( let i = 0; i < weights.length; i ++ ) {
 | |
| 
 | |
| 			weights[ i ] = weights[ i ] / sum;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		targetIn.texture.frame = ( targetIn.texture.frame || 0 ) + 1;
 | |
| 
 | |
| 		blurUniforms.envMap.value = targetIn.texture;
 | |
| 		blurUniforms.samples.value = samples;
 | |
| 		blurUniforms.weights.array = weights;
 | |
| 		blurUniforms.latitudinal.value = direction === 'latitudinal' ? 1 : 0;
 | |
| 
 | |
| 		if ( poleAxis ) {
 | |
| 
 | |
| 			blurUniforms.poleAxis.value = poleAxis;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		const { _lodMax } = this;
 | |
| 		blurUniforms.dTheta.value = radiansPerPixel;
 | |
| 		blurUniforms.mipInt.value = _lodMax - lodIn;
 | |
| 
 | |
| 		const outputSize = this._sizeLods[ lodOut ];
 | |
| 		const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 );
 | |
| 		const y = 4 * ( this._cubeSize - outputSize );
 | |
| 
 | |
| 		_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
 | |
| 		renderer.setRenderTarget( targetOut );
 | |
| 		renderer.render( blurMesh, _flatCamera );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| function _createPlanes( lodMax ) {
 | |
| 
 | |
| 	const lodPlanes = [];
 | |
| 	const sizeLods = [];
 | |
| 	const sigmas = [];
 | |
| 	const lodMeshes = [];
 | |
| 
 | |
| 	let lod = lodMax;
 | |
| 
 | |
| 	const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
 | |
| 
 | |
| 	for ( let i = 0; i < totalLods; i ++ ) {
 | |
| 
 | |
| 		const sizeLod = Math.pow( 2, lod );
 | |
| 		sizeLods.push( sizeLod );
 | |
| 		let sigma = 1.0 / sizeLod;
 | |
| 
 | |
| 		if ( i > lodMax - LOD_MIN ) {
 | |
| 
 | |
| 			sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ];
 | |
| 
 | |
| 		} else if ( i === 0 ) {
 | |
| 
 | |
| 			sigma = 0;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		sigmas.push( sigma );
 | |
| 
 | |
| 		const texelSize = 1.0 / ( sizeLod - 2 );
 | |
| 		const min = - texelSize;
 | |
| 		const max = 1 + texelSize;
 | |
| 		const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
 | |
| 
 | |
| 		const cubeFaces = 6;
 | |
| 		const vertices = 6;
 | |
| 		const positionSize = 3;
 | |
| 		const uvSize = 2;
 | |
| 		const faceIndexSize = 1;
 | |
| 
 | |
| 		const position = new Float32Array( positionSize * vertices * cubeFaces );
 | |
| 		const uv = new Float32Array( uvSize * vertices * cubeFaces );
 | |
| 		const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
 | |
| 
 | |
| 		for ( let face = 0; face < cubeFaces; face ++ ) {
 | |
| 
 | |
| 			const x = ( face % 3 ) * 2 / 3 - 1;
 | |
| 			const y = face > 2 ? 0 : - 1;
 | |
| 			const coordinates = [
 | |
| 				x, y, 0,
 | |
| 				x + 2 / 3, y, 0,
 | |
| 				x + 2 / 3, y + 1, 0,
 | |
| 				x, y, 0,
 | |
| 				x + 2 / 3, y + 1, 0,
 | |
| 				x, y + 1, 0
 | |
| 			];
 | |
| 
 | |
| 			const faceIdx = _faceLib[ face ];
 | |
| 			position.set( coordinates, positionSize * vertices * faceIdx );
 | |
| 			uv.set( uv1, uvSize * vertices * faceIdx );
 | |
| 			const fill = [ faceIdx, faceIdx, faceIdx, faceIdx, faceIdx, faceIdx ];
 | |
| 			faceIndex.set( fill, faceIndexSize * vertices * faceIdx );
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		const planes = new BufferGeometry();
 | |
| 		planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
 | |
| 		planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
 | |
| 		planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
 | |
| 		lodPlanes.push( planes );
 | |
| 		lodMeshes.push( new Mesh( planes, null ) );
 | |
| 
 | |
| 		if ( lod > LOD_MIN ) {
 | |
| 
 | |
| 			lod --;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return { lodPlanes, sizeLods, sigmas, lodMeshes };
 | |
| 
 | |
| }
 | |
| 
 | |
| function _createRenderTarget( width, height, params ) {
 | |
| 
 | |
| 	const cubeUVRenderTarget = new RenderTarget( width, height, params );
 | |
| 	cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
 | |
| 	cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
 | |
| 	cubeUVRenderTarget.texture.isPMREMTexture = true;
 | |
| 	cubeUVRenderTarget.scissorTest = true;
 | |
| 	return cubeUVRenderTarget;
 | |
| 
 | |
| }
 | |
| 
 | |
| function _setViewport( target, x, y, width, height ) {
 | |
| 
 | |
| 	const viewY = target.height - height - y;
 | |
| 
 | |
| 	target.viewport.set( x, viewY, width, height );
 | |
| 	target.scissor.set( x, viewY, width, height );
 | |
| 
 | |
| }
 | |
| 
 | |
| function _getMaterial() {
 | |
| 
 | |
| 	const material = new NodeMaterial();
 | |
| 	material.depthTest = false;
 | |
| 	material.depthWrite = false;
 | |
| 	material.blending = NoBlending;
 | |
| 
 | |
| 	return material;
 | |
| 
 | |
| }
 | |
| 
 | |
| function _getBlurShader( lodMax, width, height ) {
 | |
| 
 | |
| 	const weights = uniforms( new Array( MAX_SAMPLES ).fill( 0 ) );
 | |
| 	const poleAxis = uniform( new Vector3( 0, 1, 0 ) );
 | |
| 	const dTheta = uniform( 0 );
 | |
| 	const n = float( MAX_SAMPLES );
 | |
| 	const latitudinal = uniform( 0 ); // false, bool
 | |
| 	const samples = uniform( 1 ); // int
 | |
| 	const envMap = texture( null );
 | |
| 	const mipInt = uniform( 0 ); // int
 | |
| 	const CUBEUV_TEXEL_WIDTH = float( 1 / width );
 | |
| 	const CUBEUV_TEXEL_HEIGHT = float( 1 / height );
 | |
| 	const CUBEUV_MAX_MIP = float( lodMax );
 | |
| 
 | |
| 	const materialUniforms = {
 | |
| 		n,
 | |
| 		latitudinal,
 | |
| 		weights,
 | |
| 		poleAxis,
 | |
| 		outputDirection,
 | |
| 		dTheta,
 | |
| 		samples,
 | |
| 		envMap,
 | |
| 		mipInt,
 | |
| 		CUBEUV_TEXEL_WIDTH,
 | |
| 		CUBEUV_TEXEL_HEIGHT,
 | |
| 		CUBEUV_MAX_MIP
 | |
| 	};
 | |
| 
 | |
| 	const material = _getMaterial();
 | |
| 	material.uniforms = materialUniforms; // TODO: Move to outside of the material
 | |
| 	material.fragmentNode = blur( { ...materialUniforms, latitudinal: latitudinal.equal( 1 ) } );
 | |
| 
 | |
| 	return material;
 | |
| 
 | |
| }
 | |
| 
 | |
| function _getCubemapMaterial( envTexture ) {
 | |
| 
 | |
| 	const material = _getMaterial();
 | |
| 	material.fragmentNode = cubeTexture( envTexture, outputDirection );
 | |
| 
 | |
| 	return material;
 | |
| 
 | |
| }
 | |
| 
 | |
| function _getEquirectMaterial( envTexture ) {
 | |
| 
 | |
| 	const material = _getMaterial();
 | |
| 	material.fragmentNode = texture( envTexture, equirectUV( outputDirection ), 0 );
 | |
| 
 | |
| 	return material;
 | |
| 
 | |
| }
 | |
| 
 | |
| export default PMREMGenerator;
 |