127 lines
4.5 KiB
Python
127 lines
4.5 KiB
Python
|
|
import numpy as np
|
||
|
|
from pp_onnx.imaug import transform, create_operators
|
||
|
|
from pp_onnx.db_postprocess import DBPostProcess
|
||
|
|
from pp_onnx.predict_base import PredictBase
|
||
|
|
|
||
|
|
|
||
|
|
class TextDetector(PredictBase):
|
||
|
|
def __init__(self, args):
|
||
|
|
self.args = args
|
||
|
|
self.det_algorithm = args.det_algorithm
|
||
|
|
pre_process_list = [{
|
||
|
|
'DetResizeForTest': {
|
||
|
|
'limit_side_len': args.det_limit_side_len,
|
||
|
|
'limit_type': args.det_limit_type,
|
||
|
|
}
|
||
|
|
}, {
|
||
|
|
'NormalizeImage': {
|
||
|
|
'std': [0.229, 0.224, 0.225],
|
||
|
|
'mean': [0.485, 0.456, 0.406],
|
||
|
|
'scale': '1./255.',
|
||
|
|
'order': 'hwc'
|
||
|
|
}
|
||
|
|
}, {
|
||
|
|
'ToCHWImage': None
|
||
|
|
}, {
|
||
|
|
'KeepKeys': {
|
||
|
|
'keep_keys': ['image', 'shape']
|
||
|
|
}
|
||
|
|
}]
|
||
|
|
postprocess_params = {}
|
||
|
|
postprocess_params['name'] = 'DBPostProcess'
|
||
|
|
postprocess_params["thresh"] = args.det_db_thresh
|
||
|
|
postprocess_params["box_thresh"] = args.det_db_box_thresh
|
||
|
|
postprocess_params["max_candidates"] = 1000
|
||
|
|
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
|
||
|
|
postprocess_params["use_dilation"] = args.use_dilation
|
||
|
|
postprocess_params["score_mode"] = args.det_db_score_mode
|
||
|
|
postprocess_params["box_type"] = args.det_box_type
|
||
|
|
|
||
|
|
# 实例化预处理操作类
|
||
|
|
self.preprocess_op = create_operators(pre_process_list)
|
||
|
|
# self.postprocess_op = build_post_process(postprocess_params)
|
||
|
|
# 实例化后处理操作类
|
||
|
|
self.postprocess_op = DBPostProcess(**postprocess_params)
|
||
|
|
|
||
|
|
# 初始化模型
|
||
|
|
self.det_onnx_session = self.get_onnx_session(args.det_model_dir, args.use_gpu)
|
||
|
|
self.det_input_name = self.get_input_name(self.det_onnx_session)
|
||
|
|
self.det_output_name = self.get_output_name(self.det_onnx_session)
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
def order_points_clockwise(self, pts):
|
||
|
|
rect = np.zeros((4, 2), dtype="float32")
|
||
|
|
s = pts.sum(axis=1)
|
||
|
|
rect[0] = pts[np.argmin(s)]
|
||
|
|
rect[2] = pts[np.argmax(s)]
|
||
|
|
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
|
||
|
|
diff = np.diff(np.array(tmp), axis=1)
|
||
|
|
rect[1] = tmp[np.argmin(diff)]
|
||
|
|
rect[3] = tmp[np.argmax(diff)]
|
||
|
|
return rect
|
||
|
|
|
||
|
|
def clip_det_res(self, points, img_height, img_width):
|
||
|
|
for pno in range(points.shape[0]):
|
||
|
|
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
|
||
|
|
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
|
||
|
|
return points
|
||
|
|
|
||
|
|
def filter_tag_det_res(self, dt_boxes, image_shape):
|
||
|
|
img_height, img_width = image_shape[0:2]
|
||
|
|
dt_boxes_new = []
|
||
|
|
for box in dt_boxes:
|
||
|
|
if type(box) is list:
|
||
|
|
box = np.array(box)
|
||
|
|
box = self.order_points_clockwise(box)
|
||
|
|
box = self.clip_det_res(box, img_height, img_width)
|
||
|
|
rect_width = int(np.linalg.norm(box[0] - box[1]))
|
||
|
|
rect_height = int(np.linalg.norm(box[0] - box[3]))
|
||
|
|
if rect_width <= 3 or rect_height <= 3:
|
||
|
|
continue
|
||
|
|
dt_boxes_new.append(box)
|
||
|
|
dt_boxes = np.array(dt_boxes_new)
|
||
|
|
return dt_boxes
|
||
|
|
|
||
|
|
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
|
||
|
|
img_height, img_width = image_shape[0:2]
|
||
|
|
dt_boxes_new = []
|
||
|
|
for box in dt_boxes:
|
||
|
|
if type(box) is list:
|
||
|
|
box = np.array(box)
|
||
|
|
box = self.clip_det_res(box, img_height, img_width)
|
||
|
|
dt_boxes_new.append(box)
|
||
|
|
dt_boxes = np.array(dt_boxes_new)
|
||
|
|
return dt_boxes
|
||
|
|
|
||
|
|
def __call__(self, img):
|
||
|
|
ori_im = img.copy()
|
||
|
|
data = {'image': img}
|
||
|
|
|
||
|
|
data = transform(data, self.preprocess_op)
|
||
|
|
img, shape_list = data
|
||
|
|
if img is None:
|
||
|
|
return None, 0
|
||
|
|
img = np.expand_dims(img, axis=0)
|
||
|
|
shape_list = np.expand_dims(shape_list, axis=0)
|
||
|
|
img = img.copy()
|
||
|
|
|
||
|
|
|
||
|
|
input_feed = self.get_input_feed(self.det_input_name, img)
|
||
|
|
outputs = self.det_onnx_session.run(self.det_output_name, input_feed=input_feed)
|
||
|
|
|
||
|
|
preds = {}
|
||
|
|
preds['maps'] = outputs[0]
|
||
|
|
|
||
|
|
post_result = self.postprocess_op(preds, shape_list)
|
||
|
|
dt_boxes = post_result[0]['points']
|
||
|
|
|
||
|
|
if self.args.det_box_type == 'poly':
|
||
|
|
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
|
||
|
|
else:
|
||
|
|
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
|
||
|
|
|
||
|
|
return dt_boxes
|
||
|
|
|