127 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			127 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|  | import numpy as np | ||
|  | from pp_onnx.imaug import transform, create_operators | ||
|  | from pp_onnx.db_postprocess import DBPostProcess | ||
|  | from pp_onnx.predict_base import PredictBase | ||
|  | 
 | ||
|  | 
 | ||
|  | class TextDetector(PredictBase): | ||
|  |     def __init__(self, args): | ||
|  |         self.args = args | ||
|  |         self.det_algorithm = args.det_algorithm | ||
|  |         pre_process_list = [{ | ||
|  |             'DetResizeForTest': { | ||
|  |                 'limit_side_len': args.det_limit_side_len, | ||
|  |                 'limit_type': args.det_limit_type, | ||
|  |             } | ||
|  |         }, { | ||
|  |             'NormalizeImage': { | ||
|  |                 'std': [0.229, 0.224, 0.225], | ||
|  |                 'mean': [0.485, 0.456, 0.406], | ||
|  |                 'scale': '1./255.', | ||
|  |                 'order': 'hwc' | ||
|  |             } | ||
|  |         }, { | ||
|  |             'ToCHWImage': None | ||
|  |         }, { | ||
|  |             'KeepKeys': { | ||
|  |                 'keep_keys': ['image', 'shape'] | ||
|  |             } | ||
|  |         }] | ||
|  |         postprocess_params = {} | ||
|  |         postprocess_params['name'] = 'DBPostProcess' | ||
|  |         postprocess_params["thresh"] = args.det_db_thresh | ||
|  |         postprocess_params["box_thresh"] = args.det_db_box_thresh | ||
|  |         postprocess_params["max_candidates"] = 1000 | ||
|  |         postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio | ||
|  |         postprocess_params["use_dilation"] = args.use_dilation | ||
|  |         postprocess_params["score_mode"] = args.det_db_score_mode | ||
|  |         postprocess_params["box_type"] = args.det_box_type | ||
|  | 
 | ||
|  |         # 实例化预处理操作类 | ||
|  |         self.preprocess_op = create_operators(pre_process_list) | ||
|  |         # self.postprocess_op = build_post_process(postprocess_params) | ||
|  |         # 实例化后处理操作类 | ||
|  |         self.postprocess_op = DBPostProcess(**postprocess_params) | ||
|  | 
 | ||
|  |         # 初始化模型 | ||
|  |         self.det_onnx_session = self.get_onnx_session(args.det_model_dir, args.use_gpu) | ||
|  |         self.det_input_name = self.get_input_name(self.det_onnx_session) | ||
|  |         self.det_output_name = self.get_output_name(self.det_onnx_session) | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def order_points_clockwise(self, pts): | ||
|  |         rect = np.zeros((4, 2), dtype="float32") | ||
|  |         s = pts.sum(axis=1) | ||
|  |         rect[0] = pts[np.argmin(s)] | ||
|  |         rect[2] = pts[np.argmax(s)] | ||
|  |         tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0) | ||
|  |         diff = np.diff(np.array(tmp), axis=1) | ||
|  |         rect[1] = tmp[np.argmin(diff)] | ||
|  |         rect[3] = tmp[np.argmax(diff)] | ||
|  |         return rect | ||
|  | 
 | ||
|  |     def clip_det_res(self, points, img_height, img_width): | ||
|  |         for pno in range(points.shape[0]): | ||
|  |             points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) | ||
|  |             points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) | ||
|  |         return points | ||
|  | 
 | ||
|  |     def filter_tag_det_res(self, dt_boxes, image_shape): | ||
|  |         img_height, img_width = image_shape[0:2] | ||
|  |         dt_boxes_new = [] | ||
|  |         for box in dt_boxes: | ||
|  |             if type(box) is list: | ||
|  |                 box = np.array(box) | ||
|  |             box = self.order_points_clockwise(box) | ||
|  |             box = self.clip_det_res(box, img_height, img_width) | ||
|  |             rect_width = int(np.linalg.norm(box[0] - box[1])) | ||
|  |             rect_height = int(np.linalg.norm(box[0] - box[3])) | ||
|  |             if rect_width <= 3 or rect_height <= 3: | ||
|  |                 continue | ||
|  |             dt_boxes_new.append(box) | ||
|  |         dt_boxes = np.array(dt_boxes_new) | ||
|  |         return dt_boxes | ||
|  | 
 | ||
|  |     def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): | ||
|  |         img_height, img_width = image_shape[0:2] | ||
|  |         dt_boxes_new = [] | ||
|  |         for box in dt_boxes: | ||
|  |             if type(box) is list: | ||
|  |                 box = np.array(box) | ||
|  |             box = self.clip_det_res(box, img_height, img_width) | ||
|  |             dt_boxes_new.append(box) | ||
|  |         dt_boxes = np.array(dt_boxes_new) | ||
|  |         return dt_boxes | ||
|  | 
 | ||
|  |     def __call__(self, img): | ||
|  |         ori_im = img.copy() | ||
|  |         data = {'image': img} | ||
|  | 
 | ||
|  |         data = transform(data, self.preprocess_op) | ||
|  |         img, shape_list = data | ||
|  |         if img is None: | ||
|  |             return None, 0 | ||
|  |         img = np.expand_dims(img, axis=0) | ||
|  |         shape_list = np.expand_dims(shape_list, axis=0) | ||
|  |         img = img.copy() | ||
|  | 
 | ||
|  | 
 | ||
|  |         input_feed = self.get_input_feed(self.det_input_name, img) | ||
|  |         outputs = self.det_onnx_session.run(self.det_output_name, input_feed=input_feed) | ||
|  | 
 | ||
|  |         preds = {} | ||
|  |         preds['maps'] = outputs[0] | ||
|  | 
 | ||
|  |         post_result = self.postprocess_op(preds, shape_list) | ||
|  |         dt_boxes = post_result[0]['points'] | ||
|  | 
 | ||
|  |         if self.args.det_box_type == 'poly': | ||
|  |             dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape) | ||
|  |         else: | ||
|  |             dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape) | ||
|  | 
 | ||
|  |         return dt_boxes | ||
|  | 
 |