322 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			322 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|  | import cv2 | ||
|  | import numpy as np | ||
|  | import math | ||
|  | from PIL import Image | ||
|  | 
 | ||
|  | 
 | ||
|  | from pp_onnx.rec_postprocess import CTCLabelDecode | ||
|  | from pp_onnx.predict_base import PredictBase | ||
|  | 
 | ||
|  | class TextRecognizer(PredictBase): | ||
|  |     def __init__(self, args): | ||
|  |         self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")] | ||
|  |         self.rec_batch_num = args.rec_batch_num | ||
|  |         self.rec_algorithm = args.rec_algorithm | ||
|  |         self.postprocess_op = CTCLabelDecode(character_dict_path=args.rec_char_dict_path, use_space_char=args.use_space_char) | ||
|  | 
 | ||
|  |         # 初始化模型 | ||
|  |         self.rec_onnx_session = self.get_onnx_session(args.rec_model_dir, args.use_gpu) | ||
|  |         self.rec_input_name = self.get_input_name(self.rec_onnx_session) | ||
|  |         self.rec_output_name = self.get_output_name(self.rec_onnx_session) | ||
|  | 
 | ||
|  | 
 | ||
|  |     def resize_norm_img(self, img, max_wh_ratio): | ||
|  |         imgC, imgH, imgW = self.rec_image_shape | ||
|  |         if self.rec_algorithm == 'NRTR' or self.rec_algorithm == 'ViTSTR': | ||
|  |             img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | ||
|  |             # return padding_im | ||
|  |             image_pil = Image.fromarray(np.uint8(img)) | ||
|  |             if self.rec_algorithm == 'ViTSTR': | ||
|  |                 img = image_pil.resize([imgW, imgH], Image.BICUBIC) | ||
|  |             else: | ||
|  |                 img = image_pil.resize([imgW, imgH], Image.ANTIALIAS) | ||
|  |             img = np.array(img) | ||
|  |             norm_img = np.expand_dims(img, -1) | ||
|  |             norm_img = norm_img.transpose((2, 0, 1)) | ||
|  |             if self.rec_algorithm == 'ViTSTR': | ||
|  |                 norm_img = norm_img.astype(np.float32) / 255. | ||
|  |             else: | ||
|  |                 norm_img = norm_img.astype(np.float32) / 128. - 1. | ||
|  |             return norm_img | ||
|  |         elif self.rec_algorithm == 'RFL': | ||
|  |             img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | ||
|  |             resized_image = cv2.resize( | ||
|  |                 img, (imgW, imgH), interpolation=cv2.INTER_CUBIC) | ||
|  |             resized_image = resized_image.astype('float32') | ||
|  |             resized_image = resized_image / 255 | ||
|  |             resized_image = resized_image[np.newaxis, :] | ||
|  |             resized_image -= 0.5 | ||
|  |             resized_image /= 0.5 | ||
|  |             return resized_image | ||
|  | 
 | ||
|  |         assert imgC == img.shape[2] | ||
|  |         imgW = int((imgH * max_wh_ratio)) | ||
|  | 
 | ||
|  |         # import IPython | ||
|  |         # IPython.embed(header="predict_rec.py L-56") | ||
|  | 
 | ||
|  |         w = self.rec_onnx_session.get_inputs()[0].shape[3:][0] | ||
|  |         if isinstance(w, int) and w>0: | ||
|  |             imgW = w | ||
|  |         # if w is not None and w > 0: | ||
|  |         #     imgW = w | ||
|  | 
 | ||
|  | 
 | ||
|  |         h, w = img.shape[:2] | ||
|  |         ratio = w / float(h) | ||
|  |         if math.ceil(imgH * ratio) > imgW: | ||
|  |             resized_w = imgW | ||
|  |         else: | ||
|  |             resized_w = int(math.ceil(imgH * ratio)) | ||
|  |         if self.rec_algorithm == 'RARE': | ||
|  |             if resized_w > self.rec_image_shape[2]: | ||
|  |                 resized_w = self.rec_image_shape[2] | ||
|  |             imgW = self.rec_image_shape[2] | ||
|  |         resized_image = cv2.resize(img, (resized_w, imgH)) | ||
|  |         resized_image = resized_image.astype('float32') | ||
|  |         resized_image = resized_image.transpose((2, 0, 1)) / 255 | ||
|  |         resized_image -= 0.5 | ||
|  |         resized_image /= 0.5 | ||
|  |         padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | ||
|  |         padding_im[:, :, 0:resized_w] = resized_image | ||
|  |         return padding_im | ||
|  | 
 | ||
|  |     def resize_norm_img_vl(self, img, image_shape): | ||
|  | 
 | ||
|  |         imgC, imgH, imgW = image_shape | ||
|  |         img = img[:, :, ::-1]  # bgr2rgb | ||
|  |         resized_image = cv2.resize( | ||
|  |             img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) | ||
|  |         resized_image = resized_image.astype('float32') | ||
|  |         resized_image = resized_image.transpose((2, 0, 1)) / 255 | ||
|  |         return resized_image | ||
|  | 
 | ||
|  |     def resize_norm_img_srn(self, img, image_shape): | ||
|  |         imgC, imgH, imgW = image_shape | ||
|  | 
 | ||
|  |         img_black = np.zeros((imgH, imgW)) | ||
|  |         im_hei = img.shape[0] | ||
|  |         im_wid = img.shape[1] | ||
|  | 
 | ||
|  |         if im_wid <= im_hei * 1: | ||
|  |             img_new = cv2.resize(img, (imgH * 1, imgH)) | ||
|  |         elif im_wid <= im_hei * 2: | ||
|  |             img_new = cv2.resize(img, (imgH * 2, imgH)) | ||
|  |         elif im_wid <= im_hei * 3: | ||
|  |             img_new = cv2.resize(img, (imgH * 3, imgH)) | ||
|  |         else: | ||
|  |             img_new = cv2.resize(img, (imgW, imgH)) | ||
|  | 
 | ||
|  |         img_np = np.asarray(img_new) | ||
|  |         img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) | ||
|  |         img_black[:, 0:img_np.shape[1]] = img_np | ||
|  |         img_black = img_black[:, :, np.newaxis] | ||
|  | 
 | ||
|  |         row, col, c = img_black.shape | ||
|  |         c = 1 | ||
|  | 
 | ||
|  |         return np.reshape(img_black, (c, row, col)).astype(np.float32) | ||
|  | 
 | ||
|  |     def srn_other_inputs(self, image_shape, num_heads, max_text_length): | ||
|  | 
 | ||
|  |         imgC, imgH, imgW = image_shape | ||
|  |         feature_dim = int((imgH / 8) * (imgW / 8)) | ||
|  | 
 | ||
|  |         encoder_word_pos = np.array(range(0, feature_dim)).reshape( | ||
|  |             (feature_dim, 1)).astype('int64') | ||
|  |         gsrm_word_pos = np.array(range(0, max_text_length)).reshape( | ||
|  |             (max_text_length, 1)).astype('int64') | ||
|  | 
 | ||
|  |         gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) | ||
|  |         gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( | ||
|  |             [-1, 1, max_text_length, max_text_length]) | ||
|  |         gsrm_slf_attn_bias1 = np.tile( | ||
|  |             gsrm_slf_attn_bias1, | ||
|  |             [1, num_heads, 1, 1]).astype('float32') * [-1e9] | ||
|  | 
 | ||
|  |         gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( | ||
|  |             [-1, 1, max_text_length, max_text_length]) | ||
|  |         gsrm_slf_attn_bias2 = np.tile( | ||
|  |             gsrm_slf_attn_bias2, | ||
|  |             [1, num_heads, 1, 1]).astype('float32') * [-1e9] | ||
|  | 
 | ||
|  |         encoder_word_pos = encoder_word_pos[np.newaxis, :] | ||
|  |         gsrm_word_pos = gsrm_word_pos[np.newaxis, :] | ||
|  | 
 | ||
|  |         return [ | ||
|  |             encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, | ||
|  |             gsrm_slf_attn_bias2 | ||
|  |         ] | ||
|  | 
 | ||
|  |     def process_image_srn(self, img, image_shape, num_heads, max_text_length): | ||
|  |         norm_img = self.resize_norm_img_srn(img, image_shape) | ||
|  |         norm_img = norm_img[np.newaxis, :] | ||
|  | 
 | ||
|  |         [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \ | ||
|  |             self.srn_other_inputs(image_shape, num_heads, max_text_length) | ||
|  | 
 | ||
|  |         gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32) | ||
|  |         gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32) | ||
|  |         encoder_word_pos = encoder_word_pos.astype(np.int64) | ||
|  |         gsrm_word_pos = gsrm_word_pos.astype(np.int64) | ||
|  | 
 | ||
|  |         return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, | ||
|  |                 gsrm_slf_attn_bias2) | ||
|  | 
 | ||
|  |     def resize_norm_img_sar(self, img, image_shape, | ||
|  |                             width_downsample_ratio=0.25): | ||
|  |         imgC, imgH, imgW_min, imgW_max = image_shape | ||
|  |         h = img.shape[0] | ||
|  |         w = img.shape[1] | ||
|  |         valid_ratio = 1.0 | ||
|  |         # make sure new_width is an integral multiple of width_divisor. | ||
|  |         width_divisor = int(1 / width_downsample_ratio) | ||
|  |         # resize | ||
|  |         ratio = w / float(h) | ||
|  |         resize_w = math.ceil(imgH * ratio) | ||
|  |         if resize_w % width_divisor != 0: | ||
|  |             resize_w = round(resize_w / width_divisor) * width_divisor | ||
|  |         if imgW_min is not None: | ||
|  |             resize_w = max(imgW_min, resize_w) | ||
|  |         if imgW_max is not None: | ||
|  |             valid_ratio = min(1.0, 1.0 * resize_w / imgW_max) | ||
|  |             resize_w = min(imgW_max, resize_w) | ||
|  |         resized_image = cv2.resize(img, (resize_w, imgH)) | ||
|  |         resized_image = resized_image.astype('float32') | ||
|  |         # norm  | ||
|  |         if image_shape[0] == 1: | ||
|  |             resized_image = resized_image / 255 | ||
|  |             resized_image = resized_image[np.newaxis, :] | ||
|  |         else: | ||
|  |             resized_image = resized_image.transpose((2, 0, 1)) / 255 | ||
|  |         resized_image -= 0.5 | ||
|  |         resized_image /= 0.5 | ||
|  |         resize_shape = resized_image.shape | ||
|  |         padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32) | ||
|  |         padding_im[:, :, 0:resize_w] = resized_image | ||
|  |         pad_shape = padding_im.shape | ||
|  | 
 | ||
|  |         return padding_im, resize_shape, pad_shape, valid_ratio | ||
|  | 
 | ||
|  |     def resize_norm_img_spin(self, img): | ||
|  |         img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | ||
|  |         # return padding_im | ||
|  |         img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC) | ||
|  |         img = np.array(img, np.float32) | ||
|  |         img = np.expand_dims(img, -1) | ||
|  |         img = img.transpose((2, 0, 1)) | ||
|  |         mean = [127.5] | ||
|  |         std = [127.5] | ||
|  |         mean = np.array(mean, dtype=np.float32) | ||
|  |         std = np.array(std, dtype=np.float32) | ||
|  |         mean = np.float32(mean.reshape(1, -1)) | ||
|  |         stdinv = 1 / np.float32(std.reshape(1, -1)) | ||
|  |         img -= mean | ||
|  |         img *= stdinv | ||
|  |         return img | ||
|  | 
 | ||
|  |     def resize_norm_img_svtr(self, img, image_shape): | ||
|  | 
 | ||
|  |         imgC, imgH, imgW = image_shape | ||
|  |         resized_image = cv2.resize( | ||
|  |             img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) | ||
|  |         resized_image = resized_image.astype('float32') | ||
|  |         resized_image = resized_image.transpose((2, 0, 1)) / 255 | ||
|  |         resized_image -= 0.5 | ||
|  |         resized_image /= 0.5 | ||
|  |         return resized_image | ||
|  | 
 | ||
|  |     def resize_norm_img_abinet(self, img, image_shape): | ||
|  | 
 | ||
|  |         imgC, imgH, imgW = image_shape | ||
|  | 
 | ||
|  |         resized_image = cv2.resize( | ||
|  |             img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) | ||
|  |         resized_image = resized_image.astype('float32') | ||
|  |         resized_image = resized_image / 255. | ||
|  | 
 | ||
|  |         mean = np.array([0.485, 0.456, 0.406]) | ||
|  |         std = np.array([0.229, 0.224, 0.225]) | ||
|  |         resized_image = ( | ||
|  |             resized_image - mean[None, None, ...]) / std[None, None, ...] | ||
|  |         resized_image = resized_image.transpose((2, 0, 1)) | ||
|  |         resized_image = resized_image.astype('float32') | ||
|  | 
 | ||
|  |         return resized_image | ||
|  | 
 | ||
|  |     def norm_img_can(self, img, image_shape): | ||
|  | 
 | ||
|  |         img = cv2.cvtColor( | ||
|  |             img, cv2.COLOR_BGR2GRAY)  # CAN only predict gray scale image | ||
|  | 
 | ||
|  |         if self.inverse: | ||
|  |             img = 255 - img | ||
|  | 
 | ||
|  |         if self.rec_image_shape[0] == 1: | ||
|  |             h, w = img.shape | ||
|  |             _, imgH, imgW = self.rec_image_shape | ||
|  |             if h < imgH or w < imgW: | ||
|  |                 padding_h = max(imgH - h, 0) | ||
|  |                 padding_w = max(imgW - w, 0) | ||
|  |                 img_padded = np.pad(img, ((0, padding_h), (0, padding_w)), | ||
|  |                                     'constant', | ||
|  |                                     constant_values=(255)) | ||
|  |                 img = img_padded | ||
|  | 
 | ||
|  |         img = np.expand_dims(img, 0) / 255.0  # h,w,c -> c,h,w | ||
|  |         img = img.astype('float32') | ||
|  | 
 | ||
|  |         return img | ||
|  | 
 | ||
|  |     def __call__(self, img_list): | ||
|  |         img_num = len(img_list) | ||
|  |         # Calculate the aspect ratio of all text bars | ||
|  |         width_list = [] | ||
|  |         for img in img_list: | ||
|  |             width_list.append(img.shape[1] / float(img.shape[0])) | ||
|  |         # Sorting can speed up the recognition process | ||
|  |         indices = np.argsort(np.array(width_list)) | ||
|  |         rec_res = [['', 0.0]] * img_num | ||
|  |         batch_num = self.rec_batch_num | ||
|  | 
 | ||
|  |         for beg_img_no in range(0, img_num, batch_num): | ||
|  |             end_img_no = min(img_num, beg_img_no + batch_num) | ||
|  |             norm_img_batch = [] | ||
|  |             imgC, imgH, imgW = self.rec_image_shape[:3] | ||
|  |             max_wh_ratio = imgW / imgH | ||
|  |             # max_wh_ratio = 0 | ||
|  |             for ino in range(beg_img_no, end_img_no): | ||
|  |                 h, w = img_list[indices[ino]].shape[0:2] | ||
|  |                 wh_ratio = w * 1.0 / h | ||
|  |                 max_wh_ratio = max(max_wh_ratio, wh_ratio) | ||
|  |             for ino in range(beg_img_no, end_img_no): | ||
|  |                 norm_img = self.resize_norm_img(img_list[indices[ino]], | ||
|  |                                                 max_wh_ratio) | ||
|  |                 norm_img = norm_img[np.newaxis, :] | ||
|  |                 norm_img_batch.append(norm_img) | ||
|  | 
 | ||
|  |             norm_img_batch = np.concatenate(norm_img_batch) | ||
|  |             norm_img_batch = norm_img_batch.copy() | ||
|  | 
 | ||
|  |             # img = img[:, :, ::-1].transpose(2, 0, 1) | ||
|  |             # img = img[:, :, ::-1] | ||
|  |             # img = img.transpose(2, 0, 1) | ||
|  |             # img = img.astype(np.float32) | ||
|  |             # img = np.expand_dims(img, axis=0) | ||
|  |             # print(img.shape) | ||
|  | 
 | ||
|  |             input_feed = self.get_input_feed(self.rec_input_name, norm_img_batch) | ||
|  | 
 | ||
|  |             # import IPython | ||
|  |             # IPython.embed(header='L-303') | ||
|  | 
 | ||
|  |             outputs = self.rec_onnx_session.run(self.rec_output_name, input_feed=input_feed) | ||
|  | 
 | ||
|  |             preds = outputs[0] | ||
|  | 
 | ||
|  |             rec_result = self.postprocess_op(preds) | ||
|  |             for rno in range(len(rec_result)): | ||
|  |                 rec_res[indices[beg_img_no + rno]] = rec_result[rno] | ||
|  | 
 | ||
|  |         return rec_res |