import numpy as np from pp_onnx.imaug import transform, create_operators from pp_onnx.db_postprocess import DBPostProcess from pp_onnx.predict_base import PredictBase class TextDetector(PredictBase): def __init__(self, args): self.args = args self.det_algorithm = args.det_algorithm pre_process_list = [{ 'DetResizeForTest': { 'limit_side_len': args.det_limit_side_len, 'limit_type': args.det_limit_type, } }, { 'NormalizeImage': { 'std': [0.229, 0.224, 0.225], 'mean': [0.485, 0.456, 0.406], 'scale': '1./255.', 'order': 'hwc' } }, { 'ToCHWImage': None }, { 'KeepKeys': { 'keep_keys': ['image', 'shape'] } }] postprocess_params = {} postprocess_params['name'] = 'DBPostProcess' postprocess_params["thresh"] = args.det_db_thresh postprocess_params["box_thresh"] = args.det_db_box_thresh postprocess_params["max_candidates"] = 1000 postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio postprocess_params["use_dilation"] = args.use_dilation postprocess_params["score_mode"] = args.det_db_score_mode postprocess_params["box_type"] = args.det_box_type # 实例化预处理操作类 self.preprocess_op = create_operators(pre_process_list) # self.postprocess_op = build_post_process(postprocess_params) # 实例化后处理操作类 self.postprocess_op = DBPostProcess(**postprocess_params) # 初始化模型 self.det_onnx_session = self.get_onnx_session(args.det_model_dir, args.use_gpu) self.det_input_name = self.get_input_name(self.det_onnx_session) self.det_output_name = self.get_output_name(self.det_onnx_session) def order_points_clockwise(self, pts): rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0) diff = np.diff(np.array(tmp), axis=1) rect[1] = tmp[np.argmin(diff)] rect[3] = tmp[np.argmax(diff)] return rect def clip_det_res(self, points, img_height, img_width): for pno in range(points.shape[0]): points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) return points def filter_tag_det_res(self, dt_boxes, image_shape): img_height, img_width = image_shape[0:2] dt_boxes_new = [] for box in dt_boxes: if type(box) is list: box = np.array(box) box = self.order_points_clockwise(box) box = self.clip_det_res(box, img_height, img_width) rect_width = int(np.linalg.norm(box[0] - box[1])) rect_height = int(np.linalg.norm(box[0] - box[3])) if rect_width <= 3 or rect_height <= 3: continue dt_boxes_new.append(box) dt_boxes = np.array(dt_boxes_new) return dt_boxes def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): img_height, img_width = image_shape[0:2] dt_boxes_new = [] for box in dt_boxes: if type(box) is list: box = np.array(box) box = self.clip_det_res(box, img_height, img_width) dt_boxes_new.append(box) dt_boxes = np.array(dt_boxes_new) return dt_boxes def __call__(self, img): ori_im = img.copy() data = {'image': img} data = transform(data, self.preprocess_op) img, shape_list = data if img is None: return None, 0 img = np.expand_dims(img, axis=0) shape_list = np.expand_dims(shape_list, axis=0) img = img.copy() input_feed = self.get_input_feed(self.det_input_name, img) outputs = self.det_onnx_session.run(self.det_output_name, input_feed=input_feed) preds = {} preds['maps'] = outputs[0] post_result = self.postprocess_op(preds, shape_list) dt_boxes = post_result[0]['points'] if self.args.det_box_type == 'poly': dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape) else: dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape) return dt_boxes