import os import cv2 import copy import pp_onnx.predict_det as predict_det import pp_onnx.predict_cls as predict_cls import pp_onnx.predict_rec as predict_rec from pp_onnx.utils import get_rotate_crop_image, get_minarea_rect_crop class TextSystem(object): def __init__(self, args): self.text_detector = predict_det.TextDetector(args) self.text_recognizer = predict_rec.TextRecognizer(args) self.use_angle_cls = args.use_angle_cls self.drop_score = args.drop_score if self.use_angle_cls: self.text_classifier = predict_cls.TextClassifier(args) self.args = args self.crop_image_res_index = 0 def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res): os.makedirs(output_dir, exist_ok=True) bbox_num = len(img_crop_list) for bno in range(bbox_num): cv2.imwrite( os.path.join(output_dir, f"mg_crop_{bno+self.crop_image_res_index}.jpg"), img_crop_list[bno]) self.crop_image_res_index += bbox_num def __call__(self, img, cls=True): ori_im = img.copy() # 文字检测 dt_boxes = self.text_detector(img) if dt_boxes is None: return None, None img_crop_list = [] dt_boxes = sorted_boxes(dt_boxes) # 图片裁剪 for bno in range(len(dt_boxes)): tmp_box = copy.deepcopy(dt_boxes[bno]) if self.args.det_box_type == "quad": img_crop = get_rotate_crop_image(ori_im, tmp_box) else: img_crop = get_minarea_rect_crop(ori_im, tmp_box) img_crop_list.append(img_crop) # 方向分类 if self.use_angle_cls and cls: img_crop_list, angle_list = self.text_classifier(img_crop_list) # 图像识别 rec_res = self.text_recognizer(img_crop_list) if self.args.save_crop_res: self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,rec_res) filter_boxes, filter_rec_res = [], [] for box, rec_result in zip(dt_boxes, rec_res): text, score = rec_result if score >= self.drop_score: filter_boxes.append(box) filter_rec_res.append(rec_result) # import IPython # IPython.embed(header='L-70') return filter_boxes, filter_rec_res def sorted_boxes(dt_boxes): """ Sort text boxes in order from top to bottom, left to right args: dt_boxes(array):detected text boxes with shape [4, 2] return: sorted boxes(array) with shape [4, 2] """ num_boxes = dt_boxes.shape[0] sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) _boxes = list(sorted_boxes) for i in range(num_boxes - 1): for j in range(i, -1, -1): if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \ (_boxes[j + 1][0][0] < _boxes[j][0][0]): tmp = _boxes[j] _boxes[j] = _boxes[j + 1] _boxes[j + 1] = tmp else: break return _boxes