import cv2 import numpy as np import math from PIL import Image from pp_onnx.rec_postprocess import CTCLabelDecode from pp_onnx.predict_base import PredictBase class TextRecognizer(PredictBase): def __init__(self, args): self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")] self.rec_batch_num = args.rec_batch_num self.rec_algorithm = args.rec_algorithm self.postprocess_op = CTCLabelDecode(character_dict_path=args.rec_char_dict_path, use_space_char=args.use_space_char) # 初始化模型 self.rec_onnx_session = self.get_onnx_session(args.rec_model_dir, args.use_gpu) self.rec_input_name = self.get_input_name(self.rec_onnx_session) self.rec_output_name = self.get_output_name(self.rec_onnx_session) def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = self.rec_image_shape if self.rec_algorithm == 'NRTR' or self.rec_algorithm == 'ViTSTR': img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # return padding_im image_pil = Image.fromarray(np.uint8(img)) if self.rec_algorithm == 'ViTSTR': img = image_pil.resize([imgW, imgH], Image.BICUBIC) else: img = image_pil.resize([imgW, imgH], Image.ANTIALIAS) img = np.array(img) norm_img = np.expand_dims(img, -1) norm_img = norm_img.transpose((2, 0, 1)) if self.rec_algorithm == 'ViTSTR': norm_img = norm_img.astype(np.float32) / 255. else: norm_img = norm_img.astype(np.float32) / 128. - 1. return norm_img elif self.rec_algorithm == 'RFL': img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) resized_image = cv2.resize( img, (imgW, imgH), interpolation=cv2.INTER_CUBIC) resized_image = resized_image.astype('float32') resized_image = resized_image / 255 resized_image = resized_image[np.newaxis, :] resized_image -= 0.5 resized_image /= 0.5 return resized_image assert imgC == img.shape[2] imgW = int((imgH * max_wh_ratio)) # import IPython # IPython.embed(header="predict_rec.py L-56") w = self.rec_onnx_session.get_inputs()[0].shape[3:][0] if isinstance(w, int) and w>0: imgW = w # if w is not None and w > 0: # imgW = w h, w = img.shape[:2] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) if self.rec_algorithm == 'RARE': if resized_w > self.rec_image_shape[2]: resized_w = self.rec_image_shape[2] imgW = self.rec_image_shape[2] resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im def resize_norm_img_vl(self, img, image_shape): imgC, imgH, imgW = image_shape img = img[:, :, ::-1] # bgr2rgb resized_image = cv2.resize( img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 return resized_image def resize_norm_img_srn(self, img, image_shape): imgC, imgH, imgW = image_shape img_black = np.zeros((imgH, imgW)) im_hei = img.shape[0] im_wid = img.shape[1] if im_wid <= im_hei * 1: img_new = cv2.resize(img, (imgH * 1, imgH)) elif im_wid <= im_hei * 2: img_new = cv2.resize(img, (imgH * 2, imgH)) elif im_wid <= im_hei * 3: img_new = cv2.resize(img, (imgH * 3, imgH)) else: img_new = cv2.resize(img, (imgW, imgH)) img_np = np.asarray(img_new) img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) img_black[:, 0:img_np.shape[1]] = img_np img_black = img_black[:, :, np.newaxis] row, col, c = img_black.shape c = 1 return np.reshape(img_black, (c, row, col)).astype(np.float32) def srn_other_inputs(self, image_shape, num_heads, max_text_length): imgC, imgH, imgW = image_shape feature_dim = int((imgH / 8) * (imgW / 8)) encoder_word_pos = np.array(range(0, feature_dim)).reshape( (feature_dim, 1)).astype('int64') gsrm_word_pos = np.array(range(0, max_text_length)).reshape( (max_text_length, 1)).astype('int64') gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( [-1, 1, max_text_length, max_text_length]) gsrm_slf_attn_bias1 = np.tile( gsrm_slf_attn_bias1, [1, num_heads, 1, 1]).astype('float32') * [-1e9] gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( [-1, 1, max_text_length, max_text_length]) gsrm_slf_attn_bias2 = np.tile( gsrm_slf_attn_bias2, [1, num_heads, 1, 1]).astype('float32') * [-1e9] encoder_word_pos = encoder_word_pos[np.newaxis, :] gsrm_word_pos = gsrm_word_pos[np.newaxis, :] return [ encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2 ] def process_image_srn(self, img, image_shape, num_heads, max_text_length): norm_img = self.resize_norm_img_srn(img, image_shape) norm_img = norm_img[np.newaxis, :] [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \ self.srn_other_inputs(image_shape, num_heads, max_text_length) gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32) gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32) encoder_word_pos = encoder_word_pos.astype(np.int64) gsrm_word_pos = gsrm_word_pos.astype(np.int64) return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2) def resize_norm_img_sar(self, img, image_shape, width_downsample_ratio=0.25): imgC, imgH, imgW_min, imgW_max = image_shape h = img.shape[0] w = img.shape[1] valid_ratio = 1.0 # make sure new_width is an integral multiple of width_divisor. width_divisor = int(1 / width_downsample_ratio) # resize ratio = w / float(h) resize_w = math.ceil(imgH * ratio) if resize_w % width_divisor != 0: resize_w = round(resize_w / width_divisor) * width_divisor if imgW_min is not None: resize_w = max(imgW_min, resize_w) if imgW_max is not None: valid_ratio = min(1.0, 1.0 * resize_w / imgW_max) resize_w = min(imgW_max, resize_w) resized_image = cv2.resize(img, (resize_w, imgH)) resized_image = resized_image.astype('float32') # norm if image_shape[0] == 1: resized_image = resized_image / 255 resized_image = resized_image[np.newaxis, :] else: resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 resize_shape = resized_image.shape padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32) padding_im[:, :, 0:resize_w] = resized_image pad_shape = padding_im.shape return padding_im, resize_shape, pad_shape, valid_ratio def resize_norm_img_spin(self, img): img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # return padding_im img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC) img = np.array(img, np.float32) img = np.expand_dims(img, -1) img = img.transpose((2, 0, 1)) mean = [127.5] std = [127.5] mean = np.array(mean, dtype=np.float32) std = np.array(std, dtype=np.float32) mean = np.float32(mean.reshape(1, -1)) stdinv = 1 / np.float32(std.reshape(1, -1)) img -= mean img *= stdinv return img def resize_norm_img_svtr(self, img, image_shape): imgC, imgH, imgW = image_shape resized_image = cv2.resize( img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 return resized_image def resize_norm_img_abinet(self, img, image_shape): imgC, imgH, imgW = image_shape resized_image = cv2.resize( img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) resized_image = resized_image.astype('float32') resized_image = resized_image / 255. mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) resized_image = ( resized_image - mean[None, None, ...]) / std[None, None, ...] resized_image = resized_image.transpose((2, 0, 1)) resized_image = resized_image.astype('float32') return resized_image def norm_img_can(self, img, image_shape): img = cv2.cvtColor( img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image if self.inverse: img = 255 - img if self.rec_image_shape[0] == 1: h, w = img.shape _, imgH, imgW = self.rec_image_shape if h < imgH or w < imgW: padding_h = max(imgH - h, 0) padding_w = max(imgW - w, 0) img_padded = np.pad(img, ((0, padding_h), (0, padding_w)), 'constant', constant_values=(255)) img = img_padded img = np.expand_dims(img, 0) / 255.0 # h,w,c -> c,h,w img = img.astype('float32') return img def __call__(self, img_list): img_num = len(img_list) # Calculate the aspect ratio of all text bars width_list = [] for img in img_list: width_list.append(img.shape[1] / float(img.shape[0])) # Sorting can speed up the recognition process indices = np.argsort(np.array(width_list)) rec_res = [['', 0.0]] * img_num batch_num = self.rec_batch_num for beg_img_no in range(0, img_num, batch_num): end_img_no = min(img_num, beg_img_no + batch_num) norm_img_batch = [] imgC, imgH, imgW = self.rec_image_shape[:3] max_wh_ratio = imgW / imgH # max_wh_ratio = 0 for ino in range(beg_img_no, end_img_no): h, w = img_list[indices[ino]].shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) for ino in range(beg_img_no, end_img_no): norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = norm_img_batch.copy() # img = img[:, :, ::-1].transpose(2, 0, 1) # img = img[:, :, ::-1] # img = img.transpose(2, 0, 1) # img = img.astype(np.float32) # img = np.expand_dims(img, axis=0) # print(img.shape) input_feed = self.get_input_feed(self.rec_input_name, norm_img_batch) # import IPython # IPython.embed(header='L-303') outputs = self.rec_onnx_session.run(self.rec_output_name, input_feed=input_feed) preds = outputs[0] rec_result = self.postprocess_op(preds) for rno in range(len(rec_result)): rec_res[indices[beg_img_no + rno]] = rec_result[rno] return rec_res