341 lines
13 KiB
Python
341 lines
13 KiB
Python
import numpy as np
|
|
import cv2
|
|
import argparse
|
|
import math
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
def get_rotate_crop_image(img, points):
|
|
'''
|
|
img_height, img_width = img.shape[0:2]
|
|
left = int(np.min(points[:, 0]))
|
|
right = int(np.max(points[:, 0]))
|
|
top = int(np.min(points[:, 1]))
|
|
bottom = int(np.max(points[:, 1]))
|
|
img_crop = img[top:bottom, left:right, :].copy()
|
|
points[:, 0] = points[:, 0] - left
|
|
points[:, 1] = points[:, 1] - top
|
|
'''
|
|
assert len(points) == 4, "shape of points must be 4*2"
|
|
img_crop_width = int(
|
|
max(
|
|
np.linalg.norm(points[0] - points[1]),
|
|
np.linalg.norm(points[2] - points[3])))
|
|
img_crop_height = int(
|
|
max(
|
|
np.linalg.norm(points[0] - points[3]),
|
|
np.linalg.norm(points[1] - points[2])))
|
|
pts_std = np.float32([[0, 0], [img_crop_width, 0],
|
|
[img_crop_width, img_crop_height],
|
|
[0, img_crop_height]])
|
|
M = cv2.getPerspectiveTransform(points, pts_std)
|
|
dst_img = cv2.warpPerspective(
|
|
img,
|
|
M, (img_crop_width, img_crop_height),
|
|
borderMode=cv2.BORDER_REPLICATE,
|
|
flags=cv2.INTER_CUBIC)
|
|
dst_img_height, dst_img_width = dst_img.shape[0:2]
|
|
if dst_img_height * 1.0 / dst_img_width >= 1.5:
|
|
dst_img = np.rot90(dst_img)
|
|
return dst_img
|
|
|
|
def get_minarea_rect_crop(img, points):
|
|
bounding_box = cv2.minAreaRect(np.array(points).astype(np.int32))
|
|
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
|
|
|
|
index_a, index_b, index_c, index_d = 0, 1, 2, 3
|
|
if points[1][1] > points[0][1]:
|
|
index_a = 0
|
|
index_d = 1
|
|
else:
|
|
index_a = 1
|
|
index_d = 0
|
|
if points[3][1] > points[2][1]:
|
|
index_b = 2
|
|
index_c = 3
|
|
else:
|
|
index_b = 3
|
|
index_c = 2
|
|
|
|
box = [points[index_a], points[index_b], points[index_c], points[index_d]]
|
|
crop_img = get_rotate_crop_image(img, np.array(box))
|
|
return crop_img
|
|
|
|
|
|
def resize_img(img, input_size=600):
|
|
"""
|
|
resize img and limit the longest side of the image to input_size
|
|
"""
|
|
img = np.array(img)
|
|
im_shape = img.shape
|
|
im_size_max = np.max(im_shape[0:2])
|
|
im_scale = float(input_size) / float(im_size_max)
|
|
img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
|
|
return img
|
|
|
|
def str_count(s):
|
|
"""
|
|
Count the number of Chinese characters,
|
|
a single English character and a single number
|
|
equal to half the length of Chinese characters.
|
|
args:
|
|
s(string): the input of string
|
|
return(int):
|
|
the number of Chinese characters
|
|
"""
|
|
import string
|
|
count_zh = count_pu = 0
|
|
s_len = len(str(s))
|
|
en_dg_count = 0
|
|
for c in str(s):
|
|
if c in string.ascii_letters or c.isdigit() or c.isspace():
|
|
en_dg_count += 1
|
|
elif c.isalpha():
|
|
count_zh += 1
|
|
else:
|
|
count_pu += 1
|
|
return s_len - math.ceil(en_dg_count / 2)
|
|
|
|
def text_visual(texts,
|
|
scores,
|
|
img_h=400,
|
|
img_w=600,
|
|
threshold=0.,
|
|
font_path="./fonts/simfang.ttf"):
|
|
"""
|
|
create new blank img and draw txt on it
|
|
args:
|
|
texts(list): the text will be draw
|
|
scores(list|None): corresponding score of each txt
|
|
img_h(int): the height of blank img
|
|
img_w(int): the width of blank img
|
|
font_path: the path of font which is used to draw text
|
|
return(array):
|
|
"""
|
|
if scores is not None:
|
|
assert len(texts) == len(
|
|
scores), "The number of txts and corresponding scores must match"
|
|
|
|
def create_blank_img():
|
|
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
|
|
blank_img[:, img_w - 1:] = 0
|
|
blank_img = Image.fromarray(blank_img).convert("RGB")
|
|
draw_txt = ImageDraw.Draw(blank_img)
|
|
return blank_img, draw_txt
|
|
|
|
blank_img, draw_txt = create_blank_img()
|
|
|
|
font_size = 20
|
|
txt_color = (0, 0, 0)
|
|
# import IPython; IPython.embed(header='L-129')
|
|
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
|
|
|
|
gap = font_size + 5
|
|
txt_img_list = []
|
|
count, index = 1, 0
|
|
for idx, txt in enumerate(texts):
|
|
index += 1
|
|
if scores[idx] < threshold or math.isnan(scores[idx]):
|
|
index -= 1
|
|
continue
|
|
first_line = True
|
|
while str_count(txt) >= img_w // font_size - 4:
|
|
tmp = txt
|
|
txt = tmp[:img_w // font_size - 4]
|
|
if first_line:
|
|
new_txt = str(index) + ': ' + txt
|
|
first_line = False
|
|
else:
|
|
new_txt = ' ' + txt
|
|
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
|
|
txt = tmp[img_w // font_size - 4:]
|
|
if count >= img_h // gap - 1:
|
|
txt_img_list.append(np.array(blank_img))
|
|
blank_img, draw_txt = create_blank_img()
|
|
count = 0
|
|
count += 1
|
|
if first_line:
|
|
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
|
|
else:
|
|
new_txt = " " + txt + " " + '%.3f' % (scores[idx])
|
|
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
|
|
# whether add new blank img or not
|
|
if count >= img_h // gap - 1 and idx + 1 < len(texts):
|
|
txt_img_list.append(np.array(blank_img))
|
|
blank_img, draw_txt = create_blank_img()
|
|
count = 0
|
|
count += 1
|
|
txt_img_list.append(np.array(blank_img))
|
|
if len(txt_img_list) == 1:
|
|
blank_img = np.array(txt_img_list[0])
|
|
else:
|
|
blank_img = np.concatenate(txt_img_list, axis=1)
|
|
return np.array(blank_img)
|
|
|
|
def draw_ocr(image,
|
|
boxes,
|
|
txts=None,
|
|
scores=None,
|
|
drop_score=0.5,
|
|
font_path="./pp_onnx/fonts/simfang.ttf"):
|
|
"""
|
|
Visualize the results of OCR detection and recognition
|
|
args:
|
|
image(Image|array): RGB image
|
|
boxes(list): boxes with shape(N, 4, 2)
|
|
txts(list): the texts
|
|
scores(list): txxs corresponding scores
|
|
drop_score(float): only scores greater than drop_threshold will be visualized
|
|
font_path: the path of font which is used to draw text
|
|
return(array):
|
|
the visualized img
|
|
"""
|
|
if scores is None:
|
|
scores = [1] * len(boxes)
|
|
box_num = len(boxes)
|
|
for i in range(box_num):
|
|
if scores is not None and (scores[i] < drop_score or
|
|
math.isnan(scores[i])):
|
|
continue
|
|
box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
|
|
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
|
|
if txts is not None:
|
|
img = np.array(resize_img(image, input_size=600))
|
|
txt_img = text_visual(
|
|
txts,
|
|
scores,
|
|
img_h=img.shape[0],
|
|
img_w=600,
|
|
threshold=drop_score,
|
|
font_path=font_path)
|
|
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
|
|
return img
|
|
return image
|
|
|
|
def base64_to_cv2(b64str):
|
|
import base64
|
|
data = base64.b64decode(b64str.encode('utf8'))
|
|
data = np.frombuffer(data, np.uint8)
|
|
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
|
return data
|
|
|
|
def str2bool(v):
|
|
return v.lower() in ("true", "t", "1")
|
|
|
|
def infer_args():
|
|
parser = argparse.ArgumentParser()
|
|
# params for prediction engine
|
|
parser.add_argument("--use_gpu", type=str2bool, default=True)
|
|
parser.add_argument("--use_xpu", type=str2bool, default=False)
|
|
parser.add_argument("--use_npu", type=str2bool, default=False)
|
|
parser.add_argument("--ir_optim", type=str2bool, default=True)
|
|
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
|
|
parser.add_argument("--min_subgraph_size", type=int, default=15)
|
|
parser.add_argument("--precision", type=str, default="fp32")
|
|
parser.add_argument("--gpu_mem", type=int, default=500)
|
|
parser.add_argument("--gpu_id", type=int, default=0)
|
|
|
|
# params for text detector
|
|
parser.add_argument("--image_dir", type=str)
|
|
parser.add_argument("--page_num", type=int, default=0)
|
|
parser.add_argument("--det_algorithm", type=str, default='DB')
|
|
# parser.add_argument("--det_model_dir", type=str, default='./onnx/models/ch_ppocr_server_v2.0/det/det.onnx')
|
|
parser.add_argument("--det_model_dir", type=str, default='./pp_onnx/models/ch_PP-OCRv4/ch_PP-OCRv4_det_infer.onnx')
|
|
parser.add_argument("--det_limit_side_len", type=float, default=960)
|
|
parser.add_argument("--det_limit_type", type=str, default='max')
|
|
parser.add_argument("--det_box_type", type=str, default='quad')
|
|
|
|
# DB parmas
|
|
parser.add_argument("--det_db_thresh", type=float, default=0.3)
|
|
parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
|
|
parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
|
|
parser.add_argument("--max_batch_size", type=int, default=10)
|
|
parser.add_argument("--use_dilation", type=str2bool, default=False)
|
|
parser.add_argument("--det_db_score_mode", type=str, default="fast")
|
|
|
|
# # EAST parmas
|
|
# parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
|
|
# parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
|
|
# parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
|
|
|
|
# # SAST parmas
|
|
# parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
|
|
# parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
|
|
|
|
# # PSE parmas
|
|
# parser.add_argument("--det_pse_thresh", type=float, default=0)
|
|
# parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
|
|
# parser.add_argument("--det_pse_min_area", type=float, default=16)
|
|
# parser.add_argument("--det_pse_scale", type=int, default=1)
|
|
|
|
# # FCE parmas
|
|
# parser.add_argument("--scales", type=list, default=[8, 16, 32])
|
|
# parser.add_argument("--alpha", type=float, default=1.0)
|
|
# parser.add_argument("--beta", type=float, default=1.0)
|
|
# parser.add_argument("--fourier_degree", type=int, default=5)
|
|
|
|
# params for text recognizer
|
|
parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
|
|
# parser.add_argument("--rec_model_dir", type=str, default='./onnx/models/ch_ppocr_server_v2.0/rec/rec.onnx')
|
|
parser.add_argument("--rec_model_dir", type=str, default='./pp_onnx/models/ch_PP-OCRv4/ch_PP-OCRv4_rec_infer.onnx')
|
|
parser.add_argument("--rec_image_inverse", type=str2bool, default=True)
|
|
# parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
|
|
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
|
|
parser.add_argument("--rec_batch_num", type=int, default=6)
|
|
parser.add_argument("--max_text_length", type=int, default=25)
|
|
parser.add_argument(
|
|
"--rec_char_dict_path",
|
|
type=str,
|
|
default='./pp_onnx/models/ch_ppocr_server_v2.0/ppocr_keys_v1.txt')
|
|
parser.add_argument("--use_space_char", type=str2bool, default=True)
|
|
parser.add_argument(
|
|
"--vis_font_path", type=str, default="./pp_onnx/fonts/simfang.ttf")
|
|
parser.add_argument("--drop_score", type=float, default=0.5)
|
|
|
|
# params for e2e
|
|
parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
|
|
parser.add_argument("--e2e_model_dir", type=str)
|
|
parser.add_argument("--e2e_limit_side_len", type=float, default=768)
|
|
parser.add_argument("--e2e_limit_type", type=str, default='max')
|
|
|
|
# PGNet parmas
|
|
parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
|
|
parser.add_argument(
|
|
"--e2e_char_dict_path", type=str, default="./onnx/ppocr/utils/ic15_dict.txt")
|
|
parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
|
|
parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
|
|
|
|
# params for text classifier
|
|
parser.add_argument("--use_angle_cls", type=str2bool, default=False)
|
|
parser.add_argument("--cls_model_dir", type=str, default='./pp_onnx/models/ch_ppocr_server_v2.0/cls/cls.onnx')
|
|
parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
|
|
parser.add_argument("--label_list", type=list, default=['0', '180'])
|
|
parser.add_argument("--cls_batch_num", type=int, default=6)
|
|
parser.add_argument("--cls_thresh", type=float, default=0.9)
|
|
|
|
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
|
|
parser.add_argument("--cpu_threads", type=int, default=10)
|
|
parser.add_argument("--use_pdserving", type=str2bool, default=False)
|
|
parser.add_argument("--warmup", type=str2bool, default=False)
|
|
|
|
# SR parmas
|
|
parser.add_argument("--sr_model_dir", type=str)
|
|
parser.add_argument("--sr_image_shape", type=str, default="3, 32, 128")
|
|
parser.add_argument("--sr_batch_num", type=int, default=1)
|
|
|
|
#
|
|
parser.add_argument(
|
|
"--draw_img_save_dir", type=str, default="./onnx/inference_results")
|
|
parser.add_argument("--save_crop_res", type=str2bool, default=False)
|
|
parser.add_argument("--crop_res_save_dir", type=str, default="./onnx/output")
|
|
|
|
# multi-process
|
|
parser.add_argument("--use_mp", type=str2bool, default=False)
|
|
parser.add_argument("--total_process_num", type=int, default=1)
|
|
parser.add_argument("--process_id", type=int, default=0)
|
|
|
|
parser.add_argument("--benchmark", type=str2bool, default=False)
|
|
parser.add_argument("--save_log_path", type=str, default="./onnx/log_output/")
|
|
|
|
parser.add_argument("--show_log", type=str2bool, default=True)
|
|
parser.add_argument("--use_onnx", type=str2bool, default=False)
|
|
return parser |