277 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			277 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| This code is refered from:
 | |
| https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
 | |
| """
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import numpy as np
 | |
| import cv2
 | |
| # import paddle
 | |
| from shapely.geometry import Polygon
 | |
| import pyclipper
 | |
| 
 | |
| 
 | |
| class DBPostProcess(object):
 | |
|     """
 | |
|     The post process for Differentiable Binarization (DB).
 | |
|     """
 | |
| 
 | |
|     def __init__(self,
 | |
|                  thresh=0.3,
 | |
|                  box_thresh=0.7,
 | |
|                  max_candidates=1000,
 | |
|                  unclip_ratio=2.0,
 | |
|                  use_dilation=False,
 | |
|                  score_mode="fast",
 | |
|                  box_type='quad',
 | |
|                  **kwargs):
 | |
|         self.thresh = thresh
 | |
|         self.box_thresh = box_thresh
 | |
|         self.max_candidates = max_candidates
 | |
|         self.unclip_ratio = unclip_ratio
 | |
|         self.min_size = 3
 | |
|         self.score_mode = score_mode
 | |
|         self.box_type = box_type
 | |
|         assert score_mode in [
 | |
|             "slow", "fast"
 | |
|         ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
 | |
| 
 | |
|         self.dilation_kernel = None if not use_dilation else np.array(
 | |
|             [[1, 1], [1, 1]])
 | |
| 
 | |
|     def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
 | |
|         '''
 | |
|         _bitmap: single map with shape (1, H, W),
 | |
|             whose values are binarized as {0, 1}
 | |
|         '''
 | |
| 
 | |
|         bitmap = _bitmap
 | |
|         height, width = bitmap.shape
 | |
| 
 | |
|         boxes = []
 | |
|         scores = []
 | |
| 
 | |
|         contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
 | |
|                                        cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
 | |
| 
 | |
|         for contour in contours[:self.max_candidates]:
 | |
|             epsilon = 0.002 * cv2.arcLength(contour, True)
 | |
|             approx = cv2.approxPolyDP(contour, epsilon, True)
 | |
|             points = approx.reshape((-1, 2))
 | |
|             if points.shape[0] < 4:
 | |
|                 continue
 | |
| 
 | |
|             score = self.box_score_fast(pred, points.reshape(-1, 2))
 | |
|             if self.box_thresh > score:
 | |
|                 continue
 | |
| 
 | |
|             if points.shape[0] > 2:
 | |
|                 box = self.unclip(points, self.unclip_ratio)
 | |
|                 if len(box) > 1:
 | |
|                     continue
 | |
|             else:
 | |
|                 continue
 | |
|             box = box.reshape(-1, 2)
 | |
| 
 | |
|             _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
 | |
|             if sside < self.min_size + 2:
 | |
|                 continue
 | |
| 
 | |
|             box = np.array(box)
 | |
|             box[:, 0] = np.clip(
 | |
|                 np.round(box[:, 0] / width * dest_width), 0, dest_width)
 | |
|             box[:, 1] = np.clip(
 | |
|                 np.round(box[:, 1] / height * dest_height), 0, dest_height)
 | |
|             boxes.append(box.tolist())
 | |
|             scores.append(score)
 | |
|         return boxes, scores
 | |
| 
 | |
|     def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
 | |
|         '''
 | |
|         _bitmap: single map with shape (1, H, W),
 | |
|                 whose values are binarized as {0, 1}
 | |
|         '''
 | |
| 
 | |
|         bitmap = _bitmap
 | |
|         height, width = bitmap.shape
 | |
| 
 | |
|         outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
 | |
|                                 cv2.CHAIN_APPROX_SIMPLE)
 | |
|         if len(outs) == 3:
 | |
|             img, contours, _ = outs[0], outs[1], outs[2]
 | |
|         elif len(outs) == 2:
 | |
|             contours, _ = outs[0], outs[1]
 | |
| 
 | |
|         num_contours = min(len(contours), self.max_candidates)
 | |
| 
 | |
|         boxes = []
 | |
|         scores = []
 | |
|         for index in range(num_contours):
 | |
|             contour = contours[index]
 | |
|             points, sside = self.get_mini_boxes(contour)
 | |
|             if sside < self.min_size:
 | |
|                 continue
 | |
|             points = np.array(points)
 | |
|             if self.score_mode == "fast":
 | |
|                 score = self.box_score_fast(pred, points.reshape(-1, 2))
 | |
|             else:
 | |
|                 score = self.box_score_slow(pred, contour)
 | |
|             if self.box_thresh > score:
 | |
|                 continue
 | |
| 
 | |
|             box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2)
 | |
|             box, sside = self.get_mini_boxes(box)
 | |
|             if sside < self.min_size + 2:
 | |
|                 continue
 | |
|             box = np.array(box)
 | |
| 
 | |
|             box[:, 0] = np.clip(
 | |
|                 np.round(box[:, 0] / width * dest_width), 0, dest_width)
 | |
|             box[:, 1] = np.clip(
 | |
|                 np.round(box[:, 1] / height * dest_height), 0, dest_height)
 | |
|             boxes.append(box.astype("int32"))
 | |
|             scores.append(score)
 | |
|         return np.array(boxes, dtype="int32"), scores
 | |
| 
 | |
|     def unclip(self, box, unclip_ratio):
 | |
|         poly = Polygon(box)
 | |
|         distance = poly.area * unclip_ratio / poly.length
 | |
|         offset = pyclipper.PyclipperOffset()
 | |
|         offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
 | |
|         expanded = np.array(offset.Execute(distance))
 | |
|         return expanded
 | |
| 
 | |
|     def get_mini_boxes(self, contour):
 | |
|         bounding_box = cv2.minAreaRect(contour)
 | |
|         points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
 | |
| 
 | |
|         index_1, index_2, index_3, index_4 = 0, 1, 2, 3
 | |
|         if points[1][1] > points[0][1]:
 | |
|             index_1 = 0
 | |
|             index_4 = 1
 | |
|         else:
 | |
|             index_1 = 1
 | |
|             index_4 = 0
 | |
|         if points[3][1] > points[2][1]:
 | |
|             index_2 = 2
 | |
|             index_3 = 3
 | |
|         else:
 | |
|             index_2 = 3
 | |
|             index_3 = 2
 | |
| 
 | |
|         box = [
 | |
|             points[index_1], points[index_2], points[index_3], points[index_4]
 | |
|         ]
 | |
|         return box, min(bounding_box[1])
 | |
| 
 | |
|     def box_score_fast(self, bitmap, _box):
 | |
|         '''
 | |
|         box_score_fast: use bbox mean score as the mean score
 | |
|         '''
 | |
|         h, w = bitmap.shape[:2]
 | |
|         box = _box.copy()
 | |
|         xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1)
 | |
|         xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1)
 | |
|         ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1)
 | |
|         ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1)
 | |
| 
 | |
|         mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
 | |
|         box[:, 0] = box[:, 0] - xmin
 | |
|         box[:, 1] = box[:, 1] - ymin
 | |
|         cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1)
 | |
|         return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
 | |
| 
 | |
|     def box_score_slow(self, bitmap, contour):
 | |
|         '''
 | |
|         box_score_slow: use polyon mean score as the mean score
 | |
|         '''
 | |
|         h, w = bitmap.shape[:2]
 | |
|         contour = contour.copy()
 | |
|         contour = np.reshape(contour, (-1, 2))
 | |
| 
 | |
|         xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
 | |
|         xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
 | |
|         ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
 | |
|         ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
 | |
| 
 | |
|         mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
 | |
| 
 | |
|         contour[:, 0] = contour[:, 0] - xmin
 | |
|         contour[:, 1] = contour[:, 1] - ymin
 | |
| 
 | |
|         cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1)
 | |
|         return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
 | |
| 
 | |
|     def __call__(self, outs_dict, shape_list):
 | |
|         pred = outs_dict['maps']
 | |
|         # if isinstance(pred, paddle.Tensor):
 | |
|         #     pred = pred.numpy()
 | |
|         pred = pred[:, 0, :, :]
 | |
|         segmentation = pred > self.thresh
 | |
| 
 | |
|         boxes_batch = []
 | |
|         for batch_index in range(pred.shape[0]):
 | |
|             src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
 | |
|             if self.dilation_kernel is not None:
 | |
|                 mask = cv2.dilate(
 | |
|                     np.array(segmentation[batch_index]).astype(np.uint8),
 | |
|                     self.dilation_kernel)
 | |
|             else:
 | |
|                 mask = segmentation[batch_index]
 | |
|             if self.box_type == 'poly':
 | |
|                 boxes, scores = self.polygons_from_bitmap(pred[batch_index],
 | |
|                                                           mask, src_w, src_h)
 | |
|             elif self.box_type == 'quad':
 | |
|                 boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
 | |
|                                                        src_w, src_h)
 | |
|             else:
 | |
|                 raise ValueError("box_type can only be one of ['quad', 'poly']")
 | |
| 
 | |
|             boxes_batch.append({'points': boxes})
 | |
|         return boxes_batch
 | |
| 
 | |
| 
 | |
| class DistillationDBPostProcess(object):
 | |
|     def __init__(self,
 | |
|                  model_name=["student"],
 | |
|                  key=None,
 | |
|                  thresh=0.3,
 | |
|                  box_thresh=0.6,
 | |
|                  max_candidates=1000,
 | |
|                  unclip_ratio=1.5,
 | |
|                  use_dilation=False,
 | |
|                  score_mode="fast",
 | |
|                  box_type='quad',
 | |
|                  **kwargs):
 | |
|         self.model_name = model_name
 | |
|         self.key = key
 | |
|         self.post_process = DBPostProcess(
 | |
|             thresh=thresh,
 | |
|             box_thresh=box_thresh,
 | |
|             max_candidates=max_candidates,
 | |
|             unclip_ratio=unclip_ratio,
 | |
|             use_dilation=use_dilation,
 | |
|             score_mode=score_mode,
 | |
|             box_type=box_type)
 | |
| 
 | |
|     def __call__(self, predicts, shape_list):
 | |
|         results = {}
 | |
|         for k in self.model_name:
 | |
|             results[k] = self.post_process(predicts[k], shape_list=shape_list)
 | |
|         return results
 |