87 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			87 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import cv2
 | |
| import copy
 | |
| import numpy as np
 | |
| import math
 | |
| 
 | |
| from pp_onnx.cls_postprocess import ClsPostProcess
 | |
| from pp_onnx.predict_base import PredictBase
 | |
| 
 | |
| class TextClassifier(PredictBase):
 | |
|     def __init__(self, args):
 | |
|         self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
 | |
|         self.cls_batch_num = args.cls_batch_num
 | |
|         self.cls_thresh = args.cls_thresh
 | |
|         self.postprocess_op = ClsPostProcess(label_list=args.label_list)
 | |
| 
 | |
|         # 初始化模型
 | |
|         self.cls_onnx_session = self.get_onnx_session(args.cls_model_dir, args.use_gpu)
 | |
|         self.cls_input_name = self.get_input_name(self.cls_onnx_session)
 | |
|         self.cls_output_name = self.get_output_name(self.cls_onnx_session)
 | |
| 
 | |
|     def resize_norm_img(self, img):
 | |
|         imgC, imgH, imgW = self.cls_image_shape
 | |
|         h = img.shape[0]
 | |
|         w = img.shape[1]
 | |
|         ratio = w / float(h)
 | |
|         if math.ceil(imgH * ratio) > imgW:
 | |
|             resized_w = imgW
 | |
|         else:
 | |
|             resized_w = int(math.ceil(imgH * ratio))
 | |
|         resized_image = cv2.resize(img, (resized_w, imgH))
 | |
|         resized_image = resized_image.astype('float32')
 | |
|         if self.cls_image_shape[0] == 1:
 | |
|             resized_image = resized_image / 255
 | |
|             resized_image = resized_image[np.newaxis, :]
 | |
|         else:
 | |
|             resized_image = resized_image.transpose((2, 0, 1)) / 255
 | |
|         resized_image -= 0.5
 | |
|         resized_image /= 0.5
 | |
|         padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
 | |
|         padding_im[:, :, 0:resized_w] = resized_image
 | |
|         return padding_im
 | |
| 
 | |
|     def __call__(self, img_list):
 | |
|         img_list = copy.deepcopy(img_list)
 | |
|         img_num = len(img_list)
 | |
|         # Calculate the aspect ratio of all text bars
 | |
|         width_list = []
 | |
|         for img in img_list:
 | |
|             width_list.append(img.shape[1] / float(img.shape[0]))
 | |
|         # Sorting can speed up the cls process
 | |
|         indices = np.argsort(np.array(width_list))
 | |
| 
 | |
|         cls_res = [['', 0.0]] * img_num
 | |
|         batch_num = self.cls_batch_num
 | |
| 
 | |
|         for beg_img_no in range(0, img_num, batch_num):
 | |
| 
 | |
|             end_img_no = min(img_num, beg_img_no + batch_num)
 | |
|             norm_img_batch = []
 | |
|             max_wh_ratio = 0
 | |
| 
 | |
|             for ino in range(beg_img_no, end_img_no):
 | |
|                 h, w = img_list[indices[ino]].shape[0:2]
 | |
|                 wh_ratio = w * 1.0 / h
 | |
|                 max_wh_ratio = max(max_wh_ratio, wh_ratio)
 | |
|             for ino in range(beg_img_no, end_img_no):
 | |
|                 norm_img = self.resize_norm_img(img_list[indices[ino]])
 | |
|                 norm_img = norm_img[np.newaxis, :]
 | |
|                 norm_img_batch.append(norm_img)
 | |
|             norm_img_batch = np.concatenate(norm_img_batch)
 | |
|             norm_img_batch = norm_img_batch.copy()
 | |
| 
 | |
|             input_feed = self.get_input_feed(self.cls_input_name, norm_img_batch)
 | |
|             outputs = self.cls_onnx_session.run(self.cls_output_name, input_feed=input_feed)
 | |
| 
 | |
|             prob_out = outputs[0]
 | |
| 
 | |
|             cls_result = self.postprocess_op(prob_out)
 | |
|             for rno in range(len(cls_result)):
 | |
|                 label, score = cls_result[rno]
 | |
|                 cls_res[indices[beg_img_no + rno]] = [label, score]
 | |
|                 if '180' in label and score > self.cls_thresh:
 | |
|                     img_list[indices[beg_img_no + rno]] = cv2.rotate(
 | |
|                         img_list[indices[beg_img_no + rno]], 1)
 | |
|         return img_list, cls_res
 | |
| 
 |