272 lines
13 KiB
Python
272 lines
13 KiB
Python
import cv2
|
||
import numpy as np
|
||
import os
|
||
import random
|
||
import albumentations as A
|
||
from tqdm import tqdm
|
||
|
||
# --- 1. 用户配置(重点修改!!!)---
|
||
# 请根据你的实际路径修改,三个核心目录需区分清楚:
|
||
# 1. 特征素材来源目录:存放有「待粘贴目标(如no_helmet)」的图片和标签(用于提取可粘贴的目标)
|
||
SOURCE_FEATURE_IMAGE_DIR = r"E:\NSFW-Detection-YOLO\data\images\val\images" # 有目标的原图
|
||
SOURCE_FEATURE_LABEL_DIR = r"E:\NSFW-Detection-YOLO\data\images\val\labels" # 对应原图的标签
|
||
# 2. 独立底图目录:存放你要粘贴目标的「空白/背景底图」(底图无需标签)
|
||
BASE_IMAGE_DIR = r"D:\DataPreHandler\images\valid" # 你的底图文件夹
|
||
# 3. 输出目录:保存最终增强后的图片和标签
|
||
OUTPUT_IMAGE_DIR = r"D:\DataPreHandler\data\valid\images"
|
||
OUTPUT_LABEL_DIR = r"D:\DataPreHandler\data\valid\labels"
|
||
|
||
# 数据增强参数
|
||
AUGMENTATION_FACTOR = 1 # 每张底图生成的增强图数量(如40张)
|
||
|
||
# --- Copy-Paste 核心配置 ---
|
||
SMALL_OBJECT_CLASSES_TO_PASTE = [0,1,2,3,4,5,6] # 要粘贴的目标类别ID(如no_helmet是2)
|
||
PASTE_COUNT_RANGE = (5, 10) # 每张增强图上粘贴的目标数量(随机5-10个)
|
||
|
||
# --- 2. 常规增强流水线(修复Albumentations参数)---
|
||
transform_geometric = A.Compose([
|
||
A.HorizontalFlip(p=0.5),
|
||
# 修改1:A.Affine参数:rotate_limit→rotate,cval→pad_val,新增border_mode
|
||
A.Affine(scale=(0.8, 1.2), shear=(-10, 10), translate_percent=0.1,
|
||
rotate=30, border_mode=cv2.BORDER_CONSTANT, pad_val=0, p=0.8),
|
||
A.Perspective(scale=(0.02, 0.05), p=0.4),
|
||
], bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'], min_visibility=0.25))
|
||
|
||
transform_quality = A.Compose([
|
||
A.RandomBrightnessContrast(brightness_limit=0.25, contrast_limit=0.25, p=0.8),
|
||
A.HueSaturationValue(hue_shift_limit=20, sat_shift_limit=30, val_shift_limit=20, p=0.7),
|
||
# 修改2:A.GaussNoise参数:var_limit→std_limit(方差转标准差,数值取平方根近似)
|
||
A.OneOf([A.GaussNoise(std_limit=(3.0, 8.0), p=1.0), A.ISONoise(p=1.0)], p=0.6),
|
||
A.OneOf([A.Blur(blur_limit=(3, 7), p=1.0), A.MotionBlur(blur_limit=(3, 7), p=1.0)], p=0.5),
|
||
# 修改3:A.ImageCompression参数:quality_lower/upper→quality_range(合并为元组)
|
||
A.ImageCompression(quality_range=(70, 95), p=0.3),
|
||
], bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'], min_visibility=0.25))
|
||
|
||
transform_mixed = A.Compose([
|
||
A.HorizontalFlip(p=0.5),
|
||
# 修改4:A.Rotate参数:value→pad_val
|
||
A.Rotate(limit=15, p=0.5, border_mode=cv2.BORDER_CONSTANT, pad_val=0),
|
||
A.RandomBrightnessContrast(p=0.6),
|
||
A.GaussNoise(std_limit=(2.0, 6.0), p=0.4), # 同步修改GaussNoise参数
|
||
A.Blur(blur_limit=3, p=0.3),
|
||
], bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'], min_visibility=0.25))
|
||
|
||
base_transforms = [transform_geometric, transform_quality, transform_mixed] # 随机选择增强策略
|
||
|
||
|
||
# --- 3. 核心工具函数 ---
|
||
def harvest_objects_for_pasting(feature_image_dir, feature_label_dir, target_classes):
|
||
"""
|
||
从「特征素材来源目录」提取目标,创建可粘贴的素材库
|
||
:param feature_image_dir: 有目标的图片目录(如含no_helmet的原图)
|
||
:param feature_label_dir: 对应图片的标签目录
|
||
:param target_classes: 要提取的目标类别(如[2])
|
||
:return: 素材库 {类别ID: [目标图像1, 目标图像2, ...]}
|
||
"""
|
||
print(f"正在从 {feature_image_dir} 提取目标类别 {target_classes}...")
|
||
asset_library = {cls_id: [] for cls_id in target_classes}
|
||
|
||
# 只读取特征素材目录中的图片文件
|
||
feature_image_files = [f for f in os.listdir(feature_image_dir) if f.lower().endswith(('.jpg', '.png', '.jpeg'))]
|
||
if not feature_image_files:
|
||
raise FileNotFoundError(f"特征素材目录 {feature_image_dir} 中未找到图片!")
|
||
|
||
for filename in tqdm(feature_image_files, desc="提取目标素材"):
|
||
label_file = os.path.splitext(filename)[0] + ".txt"
|
||
label_path = os.path.join(feature_label_dir, label_file)
|
||
if not os.path.exists(label_path):
|
||
continue # 跳过无标签的图片
|
||
|
||
# 读取图片并获取尺寸
|
||
img = cv2.imread(os.path.join(feature_image_dir, filename))
|
||
if img is None:
|
||
tqdm.write(f"警告:无法读取图片 {filename},已跳过")
|
||
continue
|
||
img_h, img_w, _ = img.shape
|
||
|
||
# 解析标签,裁剪目标
|
||
with open(label_path, 'r') as f:
|
||
for line in f.readlines():
|
||
line = line.strip()
|
||
if not line:
|
||
continue
|
||
parts = line.split()
|
||
# 修改5:处理标签类别ID为浮点数的情况(如6.0→6):先转float再转int
|
||
cls_id = int(float(parts[0]))
|
||
if cls_id not in target_classes:
|
||
continue # 只保留目标类别
|
||
|
||
# YOLO归一化坐标转像素坐标(x1,y1:左上角;x2,y2:右下角)
|
||
x_center, y_center, box_w, box_h = [float(p) for p in parts[1:]]
|
||
x1 = int((x_center - box_w / 2) * img_w)
|
||
y1 = int((y_center - box_h / 2) * img_h)
|
||
x2 = int((x_center + box_w / 2) * img_w)
|
||
y2 = int((y_center + box_h / 2) * img_h)
|
||
|
||
# 确保坐标在图片范围内,避免裁剪出错
|
||
x1, y1 = max(0, x1), max(0, y1)
|
||
x2, y2 = min(img_w, x2), min(img_h, y2)
|
||
|
||
# 裁剪目标并加入素材库(排除空图像)
|
||
if x1 < x2 and y1 < y2:
|
||
cropped_obj = img[y1:y2, x1:x2]
|
||
if cropped_obj.size > 0:
|
||
asset_library[cls_id].append(cropped_obj)
|
||
|
||
# 检查素材库是否为空
|
||
total_assets = sum(len(v) for v in asset_library.values())
|
||
if total_assets == 0:
|
||
raise ValueError(f"未从特征素材目录提取到任何目标!请检查类别ID {target_classes} 是否正确")
|
||
|
||
print(f"素材库创建完成!共提取 {total_assets} 个目标(类别:{target_classes})")
|
||
return asset_library
|
||
|
||
|
||
def paste_objects_to_base(base_image, asset_library):
|
||
"""
|
||
将素材库中的目标粘贴到单张底图上
|
||
:param base_image: 输入的底图(cv2读取的BGR图像)
|
||
:param asset_library: 目标素材库
|
||
:return: 粘贴后的图像、对应的YOLO格式标签(bboxes + labels)
|
||
"""
|
||
base_h, base_w, _ = base_image.shape
|
||
pasted_bboxes = [] # 存储粘贴目标的YOLO bbox
|
||
pasted_labels = [] # 存储粘贴目标的类别ID
|
||
|
||
# 随机确定本次要粘贴的目标数量
|
||
num_to_paste = random.randint(*PASTE_COUNT_RANGE)
|
||
|
||
for _ in range(num_to_paste):
|
||
# 选择要粘贴的目标类别(只从有素材的类别中选)
|
||
valid_classes = [cls for cls, assets in asset_library.items() if len(assets) > 0]
|
||
if not valid_classes:
|
||
break # 极端情况:素材库临时为空(几乎不会发生)
|
||
|
||
# 随机选择一个目标类别和该类别下的一个素材
|
||
target_cls = random.choice(valid_classes)
|
||
target_obj = random.choice(asset_library[target_cls])
|
||
obj_h, obj_w, _ = target_obj.shape
|
||
|
||
# 跳过比底图大的目标(避免粘贴后超出边界)
|
||
if obj_h >= base_h or obj_w >= base_w:
|
||
continue
|
||
|
||
# 随机选择粘贴位置(左上角坐标,确保目标完全在底图内)
|
||
paste_x1 = random.randint(0, base_w - obj_w)
|
||
paste_y1 = random.randint(0, base_h - obj_h)
|
||
paste_x2 = paste_x1 + obj_w
|
||
paste_y2 = paste_y1 + obj_h
|
||
|
||
# 直接用Numpy切片粘贴目标(覆盖底图对应区域)
|
||
base_image[paste_y1:paste_y2, paste_x1:paste_x2] = target_obj
|
||
|
||
# 计算粘贴目标的YOLO归一化坐标(x_center, y_center, w, h)
|
||
yolo_x_center = (paste_x1 + obj_w / 2) / base_w
|
||
yolo_y_center = (paste_y1 + obj_h / 2) / base_h
|
||
yolo_w = obj_w / base_w
|
||
yolo_h = obj_h / base_h
|
||
|
||
# 将标签加入列表
|
||
pasted_bboxes.append([yolo_x_center, yolo_y_center, yolo_w, yolo_h])
|
||
pasted_labels.append(target_cls)
|
||
|
||
return base_image, pasted_bboxes, pasted_labels
|
||
|
||
|
||
def main():
|
||
# 1. 初始化:创建输出目录
|
||
os.makedirs(OUTPUT_IMAGE_DIR, exist_ok=True)
|
||
os.makedirs(OUTPUT_LABEL_DIR, exist_ok=True)
|
||
|
||
# 2. 第一步:创建目标素材库(从特征素材目录提取可粘贴的目标)
|
||
try:
|
||
asset_library = harvest_objects_for_pasting(
|
||
feature_image_dir=SOURCE_FEATURE_IMAGE_DIR,
|
||
feature_label_dir=SOURCE_FEATURE_LABEL_DIR,
|
||
target_classes=SMALL_OBJECT_CLASSES_TO_PASTE
|
||
)
|
||
except (FileNotFoundError, ValueError) as e:
|
||
print(f"错误:{e}")
|
||
return
|
||
|
||
# 3. 第二步:获取所有底图(只读取图片文件)
|
||
base_image_files = [f for f in os.listdir(BASE_IMAGE_DIR) if f.lower().endswith(('.jpg', '.png', '.jpeg'))]
|
||
if not base_image_files:
|
||
print(f"错误:底图目录 {BASE_IMAGE_DIR} 中未找到任何图片!")
|
||
return
|
||
print(f"\n找到 {len(base_image_files)} 张底图,开始生成增强数据(每张底图生成 {AUGMENTATION_FACTOR} 张)")
|
||
|
||
# 4. 主循环:遍历每张底图,生成增强数据
|
||
for base_filename in tqdm(base_image_files, desc="处理底图"):
|
||
base_name, base_ext = os.path.splitext(base_filename)
|
||
base_image_path = os.path.join(BASE_IMAGE_DIR, base_filename)
|
||
|
||
# 读取底图(若读取失败则跳过)
|
||
base_image = cv2.imread(base_image_path)
|
||
if base_image is None:
|
||
tqdm.write(f"\n警告:无法读取底图 {base_filename},已跳过")
|
||
continue
|
||
|
||
# 为当前底图生成 AUGMENTATION_FACTOR 张增强图
|
||
for aug_idx in range(AUGMENTATION_FACTOR):
|
||
# 步骤1:复制底图(避免修改原始底图),并粘贴目标
|
||
base_image_copy = base_image.copy()
|
||
pasted_image, pasted_bboxes, pasted_labels = paste_objects_to_base(
|
||
base_image=base_image_copy,
|
||
asset_library=asset_library
|
||
)
|
||
|
||
# 步骤2:对粘贴后的图像应用常规增强(Albumentations需要RGB格式)
|
||
pasted_image_rgb = cv2.cvtColor(pasted_image, cv2.COLOR_BGR2RGB)
|
||
chosen_transform = random.choice(base_transforms) # 随机选择增强策略
|
||
|
||
try:
|
||
# 应用增强(同时处理bbox和label)
|
||
augmented_result = chosen_transform(
|
||
image=pasted_image_rgb,
|
||
bboxes=pasted_bboxes,
|
||
class_labels=pasted_labels
|
||
)
|
||
final_image_rgb = augmented_result['image']
|
||
final_bboxes = augmented_result['bboxes']
|
||
final_labels = augmented_result['class_labels']
|
||
except Exception as e:
|
||
tqdm.write(f"\n警告:底图 {base_filename} 增强失败(序号 {aug_idx}):{str(e)}")
|
||
continue
|
||
|
||
# 步骤3:保存增强后的图片和标签
|
||
# 图片命名格式:底图名_aug_序号.jpg(统一转为jpg格式,避免格式混乱)
|
||
output_img_name = f"{base_name}_aug_{aug_idx}.jpg"
|
||
output_img_path = os.path.join(OUTPUT_IMAGE_DIR, output_img_name)
|
||
# RGB转BGR(cv2保存需要BGR格式)
|
||
cv2.imwrite(output_img_path, cv2.cvtColor(final_image_rgb, cv2.COLOR_RGB2BGR))
|
||
|
||
# 标签命名格式:与图片同名.txt(YOLO格式)
|
||
output_label_name = f"{base_name}_aug_{aug_idx}.txt"
|
||
output_label_path = os.path.join(OUTPUT_LABEL_DIR, output_label_name)
|
||
|
||
with open(output_label_path, 'w') as f:
|
||
for bbox, label in zip(final_bboxes, final_labels):
|
||
x_c, y_c, w, h = bbox
|
||
# 边界检查:排除增强后可能超出0-1范围的bbox(避免训练报错)
|
||
if 0 <= x_c <= 1 and 0 <= y_c <= 1 and 0 <= w <= 1 and 0 <= h <= 1:
|
||
f.write(f"{label} {x_c:.6f} {y_c:.6f} {w:.6f} {h:.6f}\n")
|
||
|
||
# 5. 完成提示
|
||
total_generated = len(base_image_files) * AUGMENTATION_FACTOR
|
||
print(f"\n✅ 数据增强全部完成!")
|
||
print(f"📊 生成数据统计:")
|
||
print(f" - 底图数量:{len(base_image_files)} 张")
|
||
print(f" - 每张底图增强次数:{AUGMENTATION_FACTOR} 次")
|
||
print(f" - 总生成图片/标签:{total_generated} 组")
|
||
print(f" - 输出路径:")
|
||
print(f" 图片 → {OUTPUT_IMAGE_DIR}")
|
||
print(f" 标签 → {OUTPUT_LABEL_DIR}")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# 运行前务必确认:
|
||
# 1. SOURCE_FEATURE_IMAGE_DIR/SOURCE_FEATURE_LABEL_DIR 是「有目标的素材目录」
|
||
# 2. BASE_IMAGE_DIR 是你的「空白底图目录」
|
||
# 3. SMALL_OBJECT_CLASSES_TO_PASTE 是要粘贴的目标类别ID(如no_helmet=2)
|
||
main() |