Files
video_detect/service/face_service.py

340 lines
13 KiB
Python
Raw Normal View History

2025-09-30 17:17:20 +08:00
import cv2
from io import BytesIO
from PIL import Image
from mysql.connector import Error as MySQLError
from ds.db import db
import numpy as np
import threading
from insightface.app import FaceAnalysis
# 全局变量定义
_insightface_app = None
_known_faces_embeddings = {} # 存储已知人脸特征 {姓名: 特征向量}
_known_faces_names = [] # 存储已知人脸姓名列表
def init_insightface():
"""初始化InsightFace引擎"""
global _insightface_app
if _insightface_app is not None:
print("InsightFace引擎已初始化无需重复执行")
return _insightface_app
try:
print("正在初始化 InsightFace 引擎模型buffalo_l...")
# 初始化引擎,指定模型路径和计算 providers
app = FaceAnalysis(
name='buffalo_l',
root='~/.insightface',
providers=['CPUExecutionProvider'] # 如需GPU可添加'CUDAExecutionProvider'
)
app.prepare(ctx_id=0, det_size=(640, 640)) # 调整检测尺寸
print("InsightFace 引擎初始化完成")
# 初始化时加载人脸特征库
init_face_data()
_insightface_app = app
return app
except Exception as e:
print(f"InsightFace 初始化失败:{str(e)}")
_insightface_app = None
return None
def init_face_data():
"""初始化或更新人脸特征库(清空旧数据,避免重复)"""
global _known_faces_embeddings, _known_faces_names
# 清空原有数据,防止重复加载
_known_faces_embeddings.clear()
_known_faces_names.clear()
try:
face_data = get_all_face_name_with_eigenvalue() # 假设该函数已定义
print(f"已加载 {len(face_data)} 个人脸数据")
for person_name, eigenvalue_data in face_data.items():
# 解析特征值支持numpy数组或字符串格式
if isinstance(eigenvalue_data, np.ndarray):
eigenvalue = eigenvalue_data.astype(np.float32)
elif isinstance(eigenvalue_data, str):
# 增强字符串解析:支持逗号/空格分隔,清理特殊字符
cleaned = (eigenvalue_data
.replace("[", "").replace("]", "")
.replace("\n", "").replace(",", " ")
.strip())
values = [v for v in cleaned.split() if v] # 过滤空字符串
if not values:
print(f"特征值解析失败(空值),跳过 {person_name}")
continue
eigenvalue = np.array(list(map(float, values)), dtype=np.float32)
else:
print(f"不支持的特征值类型({type(eigenvalue_data)}),跳过 {person_name}")
continue
# 特征值归一化(确保相似度计算一致性)
norm = np.linalg.norm(eigenvalue)
if norm == 0:
print(f"特征值为零向量,跳过 {person_name}")
continue
eigenvalue = eigenvalue / norm
# 更新全局特征库
_known_faces_embeddings[person_name] = eigenvalue
_known_faces_names.append(person_name)
print(f"成功加载 {len(_known_faces_names)} 个人脸的特征库")
except Exception as e:
print(f"加载人脸特征库失败: {e}")
def update_face_data():
"""更新人脸特征库(清空旧数据,加载最新数据)"""
global _known_faces_embeddings, _known_faces_names
print("开始更新人脸特征库...")
# 清空原有数据
_known_faces_embeddings.clear()
_known_faces_names.clear()
try:
# 获取最新人脸数据
face_data = get_all_face_name_with_eigenvalue()
print(f"获取到 {len(face_data)} 条最新人脸数据")
# 处理并加载新数据(复用原有解析逻辑)
for person_name, eigenvalue_data in face_data.items():
# 解析特征值支持numpy数组或字符串格式
if isinstance(eigenvalue_data, np.ndarray):
eigenvalue = eigenvalue_data.astype(np.float32)
elif isinstance(eigenvalue_data, str):
# 增强字符串解析:支持逗号/空格分隔,清理特殊字符
cleaned = (eigenvalue_data
.replace("[", "").replace("]", "")
.replace("\n", "").replace(",", " ")
.strip())
values = [v for v in cleaned.split() if v] # 过滤空字符串
if not values:
print(f"特征值解析失败(空值),跳过 {person_name}")
continue
eigenvalue = np.array(list(map(float, values)), dtype=np.float32)
else:
print(f"不支持的特征值类型({type(eigenvalue_data)}),跳过 {person_name}")
continue
# 特征值归一化(确保相似度计算一致性)
norm = np.linalg.norm(eigenvalue)
if norm == 0:
print(f"特征值为零向量,跳过 {person_name}")
continue
eigenvalue = eigenvalue / norm
# 更新全局特征库
_known_faces_embeddings[person_name] = eigenvalue
_known_faces_names.append(person_name)
print(f"人脸特征库更新完成,共加载 {len(_known_faces_names)} 个人脸数据")
return True # 更新成功
except Exception as e:
print(f"人脸特征库更新失败: {e}")
return False # 更新失败
def detect(frame, similarity_threshold=0.4):
global _insightface_app, _known_faces_embeddings
# 校验输入有效性
if frame is None or frame.size == 0:
return (False, "无效的输入帧数据")
# 校验引擎和特征库状态
if not _insightface_app:
return (False, "人脸引擎未初始化")
if not _known_faces_embeddings:
return (False, "人脸特征库为空")
try:
# 执行人脸检测与特征提取
faces = _insightface_app.get(frame)
except Exception as e:
return (False, f"检测错误: {str(e)}")
result_parts = []
has_matched_known_face = False # 是否有匹配到已知人脸
for face in faces:
# 归一化当前人脸特征
face_embedding = face.embedding.astype(np.float32)
norm = np.linalg.norm(face_embedding)
if norm == 0:
result_parts.append("检测到人脸但特征值为零向量(忽略)")
continue
face_embedding = face_embedding / norm
# 与已知特征库比对
max_similarity, best_match_name = -1.0, "Unknown"
for name, known_emb in _known_faces_embeddings.items():
similarity = np.dot(face_embedding, known_emb) # 余弦相似度
if similarity > max_similarity:
max_similarity = similarity
best_match_name = name
# 判断是否匹配成功
is_matched = max_similarity >= similarity_threshold
if is_matched:
has_matched_known_face = True
# 记录结果(边界框转为整数列表)
bbox = face.bbox.astype(int).tolist()
result_parts.append(
f"{'匹配' if is_matched else '未匹配'}: {best_match_name} "
f"(相似度: {max_similarity:.2f}, 边界框: {bbox})"
)
# 构建最终结果
result_str = "未检测到人脸" if not result_parts else "; ".join(result_parts)
return (has_matched_known_face, result_str)
# 上传图片并提取特征
def add_binary_data(binary_data):
"""
接收单张图片的二进制数据提取特征并保存
返回(True, 特征值numpy数组) (False, 错误信息字符串)
"""
global _insightface_app, _feature_list
# 1. 先检查引擎是否初始化成功
if not _insightface_app:
init_result = init_insightface() # 尝试重新初始化
if not init_result:
error_msg = "InsightFace引擎未初始化、无法检测人脸"
print(error_msg)
return False, error_msg
try:
# 2. 验证二进制数据有效性
if len(binary_data) < 1024: # 过滤过小的无效图片小于1KB
error_msg = f"图片过小({len(binary_data)}字节)、可能不是有效图片"
print(error_msg)
return False, error_msg
# 3. 二进制数据转CV2格式关键步骤、避免通道错误
try:
img = Image.open(BytesIO(binary_data)).convert("RGB") # 强制转RGB
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) # InsightFace需要BGR格式
except Exception as e:
error_msg = f"图片格式转换失败:{str(e)}"
print(error_msg)
return False, error_msg
# 4. 检查图片尺寸(避免极端尺寸导致检测失败)
height, width = frame.shape[:2]
if height < 64 or width < 64: # 人脸检测最小建议尺寸
error_msg = f"图片尺寸过小({width}x{height}、需至少64x64像素"
print(error_msg)
return False, error_msg
# 5. 调用InsightFace检测人脸
print(f"开始检测人脸(图片尺寸:{width}x{height}、格式BGR")
faces = _insightface_app.get(frame)
if not faces:
error_msg = "未检测到人脸(请确保图片包含清晰正面人脸、无遮挡、不模糊)"
print(error_msg)
return False, error_msg
# 6. 提取特征并保存
current_feature = faces[0].embedding
_feature_list.append(current_feature)
print(f"人脸检测成功、提取特征值(维度:{current_feature.shape[0]})、累计特征数:{len(_feature_list)}")
return True, current_feature
except Exception as e:
error_msg = f"处理图片时发生异常:{str(e)}"
print(error_msg)
return False, error_msg
# 获取数据库最新的人脸及其特征
def get_all_face_name_with_eigenvalue() -> dict:
conn = None
cursor = None
try:
conn = db.get_connection()
cursor = conn.cursor(dictionary=True)
query = "SELECT name, eigenvalue FROM face WHERE name IS NOT NULL"
cursor.execute(query)
faces = cursor.fetchall()
name_to_eigenvalues = {}
for face in faces:
name = face["name"]
eigenvalue = face["eigenvalue"]
if name in name_to_eigenvalues:
name_to_eigenvalues[name].append(eigenvalue)
else:
name_to_eigenvalues[name] = [eigenvalue]
face_dict = {}
for name, eigenvalues in name_to_eigenvalues.items():
if len(eigenvalues) > 1:
face_dict[name] = get_average_feature(eigenvalues)
else:
face_dict[name] = eigenvalues[0]
return face_dict
except MySQLError as e:
raise Exception(f"获取人脸特征失败: {str(e)}") from e
finally:
db.close_connection(conn, cursor)
# 获取平均特征值
def get_average_feature(features=None):
global _feature_list
try:
if features is None:
features = _feature_list
if not isinstance(features, list) or len(features) == 0:
print("输入必须是包含至少一个特征值的列表")
return None
processed_features = []
for i, embedding in enumerate(features):
try:
if isinstance(embedding, str):
embedding_str = embedding.replace('[', '').replace(']', '').replace(',', ' ').strip()
embedding_list = [float(num) for num in embedding_str.split() if num.strip()]
embedding_np = np.array(embedding_list, dtype=np.float32)
else:
embedding_np = np.array(embedding, dtype=np.float32)
if len(embedding_np.shape) == 1:
processed_features.append(embedding_np)
print(f"已添加第 {i + 1} 个特征值用于计算平均值")
else:
print(f"跳过第 {i + 1} 个特征值:不是一维数组")
except Exception as e:
print(f"处理第 {i + 1} 个特征值时出错:{str(e)}")
if not processed_features:
print("没有有效的特征值用于计算平均值")
return None
dims = {feat.shape[0] for feat in processed_features}
if len(dims) > 1:
print(f"特征值维度不一致:{dims}、无法计算平均值")
return None
avg_feature = np.mean(processed_features, axis=0)
print(f"计算成功:{len(processed_features)} 个特征值的平均向量(维度:{avg_feature.shape[0]}")
return avg_feature
except Exception as e:
print(f"计算平均特征值出错:{str(e)}")
return None