内容安全审核

This commit is contained in:
2025-09-30 17:17:20 +08:00
commit cc6e66bbf8
523 changed files with 4853 additions and 0 deletions

131
service/model_service.py Normal file
View File

@ -0,0 +1,131 @@
from http.client import HTTPException
import numpy as np
import torch
from MySQLdb import MySQLError
from ultralytics import YOLO
import os
from ds.db import db
from service.file_service import get_absolute_path
# 全局变量
current_yolo_model = None
current_model_absolute_path = None # 存储模型绝对路径不依赖model实例
ALLOWED_MODEL_EXT = {"pt"}
MAX_MODEL_SIZE = 100 * 1024 * 1024 # 100MB
def load_yolo_model():
"""加载模型并存储绝对路径"""
global current_yolo_model, current_model_absolute_path
model_rel_path = get_enabled_model_rel_path()
print(f"[模型初始化] 加载模型:{model_rel_path}")
# 计算并存储绝对路径
current_model_absolute_path = get_absolute_path(model_rel_path)
print(f"[模型初始化] 绝对路径:{current_model_absolute_path}")
# 检查模型文件
if not os.path.exists(current_model_absolute_path):
raise FileNotFoundError(f"模型文件不存在: {current_model_absolute_path}")
try:
new_model = YOLO(current_model_absolute_path)
if torch.cuda.is_available():
new_model.to('cuda')
print("模型已移动到GPU")
else:
print("使用CPU进行推理")
current_yolo_model = new_model
print(f"成功加载模型: {current_model_absolute_path}")
return current_yolo_model
except Exception as e:
print(f"模型加载失败:{str(e)}")
raise
def get_current_model():
"""获取当前模型实例"""
if current_yolo_model is None:
raise ValueError("尚未加载任何YOLO模型请先调用load_yolo_model加载模型")
return current_yolo_model
def detect(image_np, conf_threshold=0.8):
# 1. 输入格式验证
if not isinstance(image_np, np.ndarray):
raise ValueError("输入必须是numpy数组BGR图像")
if image_np.ndim != 3 or image_np.shape[-1] != 3:
raise ValueError(f"输入图像格式错误,需为 (h, w, 3) 的BGR数组当前shape: {image_np.shape}")
detection_results = []
try:
model = get_current_model()
if not current_model_absolute_path:
raise RuntimeError("模型未初始化!请先调用 load_yolo_model 加载模型")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"检测设备:{device} | 置信度阈值:{conf_threshold}")
# 图像尺寸信息
img_height, img_width = image_np.shape[:2]
print(f"输入图像尺寸:{img_width}x{img_height}")
# YOLO检测
print("执行YOLO检测")
results = model.predict(
image_np,
conf=conf_threshold,
device=device,
show=False,
)
# 4. 整理检测结果仅保留Chest类别ID=2
for box in results[0].boxes:
class_id = int(box.cls[0]) # 类别ID
class_name = model.names[class_id]
confidence = float(box.conf[0])
bbox = tuple(map(int, box.xyxy[0]))
# 过滤条件:置信度达标 + 类别为Chestclass_id=2
# and class_id == 2
if confidence >= conf_threshold:
detection_results.append({
"class": class_name,
"confidence": confidence,
"bbox": bbox
})
# 判断是否有目标
has_content = len(detection_results) > 0
return has_content, detection_results
except Exception as e:
error_msg = f"检测过程出错:{str(e)}"
print(error_msg)
return False, None
def get_enabled_model_rel_path():
"""获取数据库中启用的模型相对路径"""
conn = None
cursor = None
try:
conn = db.get_connection()
cursor = conn.cursor(dictionary=True)
query = "SELECT path FROM model WHERE is_default = 1 LIMIT 1"
cursor.execute(query)
result = cursor.fetchone()
if not result or not result.get('path'):
raise HTTPException(status_code=404, detail="未找到启用的默认模型")
return result['path']
except MySQLError as e:
raise HTTPException(status_code=500, detail=f"查询默认模型时发生数据库错误:{str(e)}") from e
except Exception as e:
if isinstance(e, HTTPException):
raise e
raise HTTPException(status_code=500, detail=f"获取默认模型路径失败:{str(e)}") from e
finally:
db.close_connection(conn, cursor)