import os import re import shutil from datetime import datetime from PIL import ImageDraw, ImageFont from fastapi import UploadFile import cv2 from PIL import Image import numpy as np # 上传根目录 UPLOAD_ROOT = "upload" PRE = "/api/file/download/" # 确保上传根目录存在 os.makedirs(UPLOAD_ROOT, exist_ok=True) def save_detect_file(client_ip: str, image_np: np.ndarray, file_type: str) -> str: """保存numpy数组格式的PNG图片到detect目录,返回下载路径""" today = datetime.now() year = today.strftime("%Y") month = today.strftime("%m") day = today.strftime("%d") # 构建目录路径: upload/detect/客户端IP/type/年/月/日(包含UPLOAD_ROOT) file_dir = os.path.join( UPLOAD_ROOT, "detect", client_ip, file_type, year, month, day ) # 创建目录(确保目录存在) os.makedirs(file_dir, exist_ok=True) # 生成当前时间戳作为文件名,确保唯一性 timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f") filename = f"{timestamp}.png" # 1. 完整路径:用于实际保存文件(包含UPLOAD_ROOT) full_path = os.path.join(file_dir, filename) # 2. 相对路径:用于返回给前端(移除UPLOAD_ROOT前缀) relative_path = full_path.replace(UPLOAD_ROOT, "", 1).lstrip(os.sep) # 保存numpy数组为PNG图片 try: # -------- 新增/修改:处理颜色通道和数据类型 -------- # 1. 数据类型转换:确保是uint8(若为float32且范围0-1,需转成0-255的uint8) if image_np.dtype != np.uint8: image_np = (image_np * 255).astype(np.uint8) # 2. 通道顺序转换:若为OpenCV的BGR格式,转成PIL需要的RGB格式 image_rgb = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) # 3. 转换为PIL Image并保存 img = Image.fromarray(image_rgb) img.save(full_path, format='PNG') except Exception as e: # 处理可能的异常(如数组格式不正确) raise Exception(f"保存图片失败: {str(e)}") # 统一路径分隔符为/,拼接前缀返回 return PRE + relative_path.replace(os.sep, "/") def save_detect_yolo_file( client_ip: str, image_np: np.ndarray, detection_results: list, file_type: str = "yolo" ) -> str: print("......................") """ 保存YOLO检测结果图片(在原图上绘制边界框+标签),返回前端可访问的下载路径 """ # 输入参数验证 if not isinstance(image_np, np.ndarray): raise ValueError(f"输入image_np必须是numpy数组,当前类型:{type(image_np)}") if image_np.ndim != 3 or image_np.shape[-1] != 3: raise ValueError(f"输入图像必须是 (h, w, 3) 的BGR数组,当前shape:{image_np.shape}") if not isinstance(detection_results, list): raise ValueError(f"detection_results必须是列表,当前类型:{type(detection_results)}") for idx, result in enumerate(detection_results): required_keys = {"class", "confidence", "bbox"} if not isinstance(result, dict) or not required_keys.issubset(result.keys()): raise ValueError( f"detection_results第{idx}个元素格式错误,需包含键:{required_keys}," f"当前元素:{result}" ) bbox = result["bbox"] if not (isinstance(bbox, (tuple, list)) and len(bbox) == 4 and all(isinstance(x, int) for x in bbox)): raise ValueError( f"detection_results第{idx}个元素的bbox格式错误,需为(x1,y1,x2,y2)整数元组," f"当前bbox:{bbox}" ) #图像预处理(数据类型+通道) draw_image = image_np.copy() if draw_image.dtype != np.uint8: draw_image = np.clip(draw_image * 255, 0, 255).astype(np.uint8) #绘制边界框+标签 # 遍历所有检测结果,逐个绘制 for result in detection_results: class_name = result["class"] confidence = result["confidence"] x1, y1, x2, y2 = result["bbox"] cv2.rectangle(draw_image, (x1, y1), (x2, y2), color=(0, 255, 0), thickness=2) label = f"{class_name}: {confidence:.2f}" font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.5 font_thickness = 2 (label_width, label_height), baseline = cv2.getTextSize( label, font, font_scale, font_thickness ) bg_top_left = (x1, y1 - label_height - 10) bg_bottom_right = (x1 + label_width, y1) if bg_top_left[1] < 0: bg_top_left = (x1, 0) bg_bottom_right = (x1 + label_width, label_height + 10) cv2.rectangle(draw_image, bg_top_left, bg_bottom_right, color=(0, 0, 0), thickness=-1) text_origin = (x1, y1 - 5) if bg_top_left[1] == 0: text_origin = (x1, label_height + 5) cv2.putText( draw_image, label, text_origin, font, font_scale, color=(255, 255, 255), thickness=font_thickness ) #保存图片 try: today = datetime.now() year = today.strftime("%Y") month = today.strftime("%m") day = today.strftime("%d") file_dir = os.path.join( UPLOAD_ROOT, "detect", client_ip, file_type, year, month, day ) #创建目录(若不存在则创建,支持多级目录) os.makedirs(file_dir, exist_ok=True) #生成唯一文件名 timestamp = today.strftime("%Y%m%d%H%M%S%f") filename = f"{timestamp}.png" # 4.4 构建完整保存路径和前端访问路径 full_path = os.path.join(file_dir, filename) # 本地完整路径 # 相对路径:移除UPLOAD_ROOT前缀,统一用"/"作为分隔符(兼容Windows/Linux) relative_path = full_path.replace(UPLOAD_ROOT, "", 1).lstrip(os.sep) download_path = PRE + relative_path.replace(os.sep, "/") # 4.5 保存图片(CV2绘制的是BGR,需转RGB后用PIL保存,与原逻辑一致) image_rgb = cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB) img_pil = Image.fromarray(image_rgb) img_pil.save(full_path, format="PNG", quality=95) # PNG格式无压缩,quality可忽略 print(f"YOLO检测图片保存成功 | 本地路径:{full_path} | 下载路径:{download_path}") return download_path except Exception as e: raise Exception(f"YOLO检测图片保存失败:{str(e)}") from e def save_detect_face_file( client_ip: str, image_np: np.ndarray, face_result: str, file_type: str = "face", matched_color: tuple = (0, 255, 0) ) -> str: """ 保存人脸识别结果图片(仅为「匹配成功」的人脸画框,标签不包含“匹配”二字) """ #输入参数验证 if not isinstance(image_np, np.ndarray) or image_np.ndim != 3 or image_np.shape[-1] != 3: raise ValueError(f"输入图像需为 (h, w, 3) 的BGR数组,当前shape:{image_np.shape}") if not isinstance(face_result, str) or face_result.strip() == "": raise ValueError("face_result必须是非空字符串") # 解析face_result提取人脸信息 face_info_list = [] if face_result.strip() != "未检测到人脸": face_pattern = re.compile( r"(匹配|未匹配):\s*([^\s(]+)\s*\(相似度:\s*(\d+\.\d+),\s*边界框:\s*\[(\d+,\s*\d+,\s*\d+,\s*\d+)\]\)" ) for part in [p.strip() for p in face_result.split(";") if p.strip()]: match = face_pattern.match(part) if match: status, name, similarity, bbox_str = match.groups() bbox = list(map(int, bbox_str.replace(" ", "").split(","))) if len(bbox) == 4: face_info_list.append({ "status": status, "name": name, "similarity": float(similarity), "bbox": bbox }) # 图像格式转换(OpenCV→PIL) image_rgb = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) pil_img = Image.fromarray(image_rgb) draw = ImageDraw.Draw(pil_img) # 绘制边界框和标签 font_size = 12 try: font = ImageFont.truetype("simhei", font_size) except: try: font = ImageFont.truetype("simsun", font_size) except: font = ImageFont.load_default() print("警告:未找到指定中文字体,使用PIL默认字体(可能影响中文显示)") for face_info in face_info_list: status = face_info["status"] if status != "匹配": print(f"跳过未匹配人脸:{face_info['name']}(相似度:{face_info['similarity']:.2f})") continue name = face_info["name"] similarity = face_info["similarity"] x1, y1, x2, y2 = face_info["bbox"] # 4.1 绘制边界框(绿色) img_cv = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR) cv2.rectangle(img_cv, (x1, y1), (x2, y2), color=matched_color, thickness=2) pil_img = Image.fromarray(cv2.cvtColor(img_cv, cv2.COLOR_BGR2RGB)) draw = ImageDraw.Draw(pil_img) label = f"{name} (相似度: {similarity:.2f})" # 4.3 计算标签尺寸(文本变短后会自动适配,无需额外调整) label_bbox = draw.textbbox((0, 0), label, font=font) label_width = label_bbox[2] - label_bbox[0] label_height = label_bbox[3] - label_bbox[1] # 4.4 计算标签背景位置(避免超出图像) bg_x1, bg_y1 = x1, y1 - label_height - 10 bg_x2, bg_y2 = x1 + label_width, y1 if bg_y1 < 0: bg_y1, bg_y2 = y2 + 5, y2 + label_height + 15 # 4.5 绘制标签背景(黑色)和文本(白色) draw.rectangle([(bg_x1, bg_y1), (bg_x2, bg_y2)], fill=(0, 0, 0)) text_x = bg_x1 text_y = bg_y1 if bg_y1 >= 0 else bg_y1 + label_height draw.text((text_x, text_y), label, font=font, fill=(255, 255, 255)) #保存图片 try: today = datetime.now() file_dir = os.path.join( UPLOAD_ROOT, "detect", client_ip, file_type, today.strftime("%Y"), today.strftime("%m"), today.strftime("%d") ) os.makedirs(file_dir, exist_ok=True) timestamp = today.strftime("%Y%m%d%H%M%S%f") filename = f"{timestamp}.png" full_path = os.path.join(file_dir, filename) pil_img.save(full_path, format="PNG", quality=100) relative_path = full_path.replace(UPLOAD_ROOT, "", 1).lstrip(os.sep) download_path = PRE + relative_path.replace(os.sep, "/") matched_count = sum(1 for info in face_info_list if info["status"] == "匹配") print(f"人脸检测图片保存成功 | 客户端IP:{client_ip} | 匹配人脸数:{matched_count} | 保存路径:{download_path}") return download_path except Exception as e: raise Exception(f"人脸检测图片保存失败(客户端IP:{client_ip}):{str(e)}") from e def save_source_file(upload_file: UploadFile, file_type: str) -> str: """保存上传的文件到source目录,返回下载路径""" today = datetime.now() year = today.strftime("%Y") month = today.strftime("%m") day = today.strftime("%d") # 生成精确到微秒的时间戳,确保文件名唯一 timestamp = today.strftime("%Y%m%d%H%M%S%f") # 构建新文件名:时间戳_原文件名 unique_filename = f"{timestamp}_{upload_file.filename}" # 构建目录路径: upload/source/type/年/月/日(包含UPLOAD_ROOT) file_dir = os.path.join( UPLOAD_ROOT, "source", file_type, year, month, day ) # 创建目录(确保目录存在) os.makedirs(file_dir, exist_ok=True) # 1. 完整路径:用于实际保存文件(使用带时间戳的唯一文件名) full_path = os.path.join(file_dir, unique_filename) # 2. 相对路径:用于返回给前端 relative_path = full_path.replace(UPLOAD_ROOT, "", 1).lstrip(os.sep) # 保存文件(使用完整路径) try: with open(full_path, "wb") as buffer: shutil.copyfileobj(upload_file.file, buffer) finally: upload_file.file.close() # 统一路径分隔符为/ return PRE + relative_path.replace(os.sep, "/") def get_absolute_path(relative_path: str) -> str: """ 根据相对路径获取服务器上的绝对路径 """ path_without_pre = relative_path.replace(PRE, "", 1) # 将相对路径转换为系统兼容的格式 normalized_path = os.path.normpath(path_without_pre) # 拼接基础路径和相对路径,得到绝对路径 absolute_path = os.path.abspath(os.path.join(UPLOAD_ROOT, normalized_path)) # 安全检查:确保生成的路径在UPLOAD_ROOT目录下,防止路径遍历 if not absolute_path.startswith(os.path.abspath(UPLOAD_ROOT)): raise ValueError("无效的相对路径,可能试图访问上传目录之外的内容") return absolute_path