237 lines
8.5 KiB
Python
237 lines
8.5 KiB
Python
import time
|
||
import numpy as np
|
||
|
||
# 修复np.int已弃用的问题
|
||
if not hasattr(np, 'int'):
|
||
np.int = int
|
||
|
||
from paddleocr import PaddleOCR
|
||
from service.sensitive_service import get_all_sensitive_words
|
||
|
||
|
||
# AC自动机节点定义
|
||
class AhoNode:
|
||
def __init__(self):
|
||
self.children = {} # 子节点映射(字符->节点)
|
||
self.fail = None # 失败指针(类似KMP的next数组)
|
||
self.is_end = False # 标记是否为某个模式串的结尾
|
||
self.word = None # 存储当前结尾对应的完整违禁词
|
||
|
||
|
||
# AC自动机实现(多模式字符串匹配)
|
||
class AhoCorasick:
|
||
def __init__(self):
|
||
self.root = AhoNode() # 根节点
|
||
|
||
def add_word(self, word):
|
||
"""添加违禁词到Trie树"""
|
||
if not isinstance(word, str) or not word.strip():
|
||
return # 过滤无效词
|
||
node = self.root
|
||
for char in word:
|
||
if char not in node.children:
|
||
node.children[char] = AhoNode()
|
||
node = node.children[char]
|
||
node.is_end = True
|
||
node.word = word # 记录完整词
|
||
|
||
def build_fail(self):
|
||
"""构建失败指针(BFS遍历)"""
|
||
queue = []
|
||
# 根节点的子节点失败指针指向根节点
|
||
for child in self.root.children.values():
|
||
child.fail = self.root
|
||
queue.append(child)
|
||
|
||
# BFS处理其他节点
|
||
while queue:
|
||
current_node = queue.pop(0)
|
||
# 遍历当前节点的所有子节点
|
||
for char, child in current_node.children.items():
|
||
# 寻找失败指针目标节点
|
||
fail_node = current_node.fail
|
||
while fail_node is not None and char not in fail_node.children:
|
||
fail_node = fail_node.fail
|
||
# 确定失败指针指向
|
||
child.fail = fail_node.children[char] if (fail_node and char in fail_node.children) else self.root
|
||
queue.append(child)
|
||
|
||
def match(self, text):
|
||
"""匹配文本中所有出现的违禁词(去重)"""
|
||
result = set()
|
||
node = self.root
|
||
for char in text:
|
||
# 沿失败链查找可用节点
|
||
while node is not None and char not in node.children:
|
||
node = node.fail
|
||
# 重置到根节点(如果没找到)
|
||
node = node.children[char] if (node and char in node.children) else self.root
|
||
|
||
# 收集所有匹配的违禁词(包括失败链上的)
|
||
temp = node
|
||
while temp != self.root:
|
||
if temp.is_end:
|
||
result.add(temp.word)
|
||
temp = temp.fail
|
||
return list(result)
|
||
|
||
|
||
# 全局变量
|
||
_ocr_engine = None
|
||
_ac_automaton = None # 替换原有的_forbidden_words集合
|
||
_conf_threshold = 0.5
|
||
|
||
|
||
def set_forbidden_words(new_words):
|
||
"""更新违禁词(使用AC自动机存储)"""
|
||
global _ac_automaton
|
||
if not isinstance(new_words, (set, list, tuple)):
|
||
raise TypeError("新违禁词必须是集合、列表或元组类型")
|
||
|
||
# 初始化AC自动机并添加有效词
|
||
_ac_automaton = AhoCorasick()
|
||
valid_words = [word for word in new_words if isinstance(word, str) and word.strip()]
|
||
for word in valid_words:
|
||
_ac_automaton.add_word(word.strip())
|
||
# 构建失败指针(关键步骤)
|
||
_ac_automaton.build_fail()
|
||
|
||
print(f"已通过函数更新违禁词,当前数量: {len(valid_words)}")
|
||
|
||
|
||
def load_forbidden_words():
|
||
"""从敏感词服务加载违禁词并初始化AC自动机"""
|
||
global _ac_automaton
|
||
try:
|
||
sensitive_words = get_all_sensitive_words() # 保持原接口不变(返回list[str])
|
||
_ac_automaton = AhoCorasick()
|
||
|
||
# 添加所有有效敏感词
|
||
valid_words = [word for word in sensitive_words if isinstance(word, str) and word.strip()]
|
||
for word in valid_words:
|
||
_ac_automaton.add_word(word.strip())
|
||
|
||
# 构建失败指针
|
||
_ac_automaton.build_fail()
|
||
print(f"加载的违禁词数量: {len(valid_words)}")
|
||
return True
|
||
except Exception as e:
|
||
print(f"Forbidden words load error: {e}")
|
||
return False
|
||
|
||
|
||
def init_ocr_engine():
|
||
"""初始化OCR引擎和违禁词自动机"""
|
||
global _ocr_engine
|
||
try:
|
||
_ocr_engine = PaddleOCR(
|
||
use_angle_cls=True,
|
||
lang="ch",
|
||
show_log=False,
|
||
use_gpu=True,
|
||
max_text_length=1024
|
||
)
|
||
load_result = load_forbidden_words()
|
||
if not load_result:
|
||
print("警告:违禁词加载失败,可能影响检测功能")
|
||
print("OCR引擎初始化完成")
|
||
return True
|
||
except Exception as e:
|
||
print(f"OCR引擎初始化错误: {e}")
|
||
_ocr_engine = None
|
||
return False
|
||
|
||
|
||
def detect(frame, conf_threshold=0.8):
|
||
"""检测帧中的文本是否包含违禁词(拆分OCR和匹配时间)"""
|
||
print("开始进行OCR检测...")
|
||
total_start = time.time() # 总耗时开始
|
||
ocr_time = 0.0 # OCR及结果解析耗时
|
||
match_time = 0.0 # 违禁词匹配耗时
|
||
|
||
try:
|
||
if not _ocr_engine or not _ac_automaton:
|
||
return (False, "OCR引擎或违禁词库未初始化")
|
||
|
||
# 1. OCR识别及结果解析阶段
|
||
ocr_start = time.time()
|
||
ocr_res = _ocr_engine.ocr(frame, cls=True)
|
||
if not ocr_res or not isinstance(ocr_res, list):
|
||
return (False, "无OCR结果")
|
||
|
||
texts = []
|
||
confs = []
|
||
# 解析OCR结果
|
||
for line in ocr_res:
|
||
if line is None:
|
||
continue
|
||
items_to_process = line if isinstance(line, list) else [line]
|
||
|
||
for item in items_to_process:
|
||
# 过滤坐标类数据
|
||
if isinstance(item, list) and len(item) == 4:
|
||
is_coordinate = all(isinstance(p, list) and len(p) == 2 and
|
||
all(isinstance(c, (int, float)) for c in p)
|
||
for p in item)
|
||
if is_coordinate:
|
||
continue
|
||
# 提取文本和置信度
|
||
if isinstance(item, tuple) and len(item) == 2:
|
||
text, conf = item
|
||
if isinstance(text, str) and isinstance(conf, (int, float)):
|
||
texts.append(text.strip())
|
||
confs.append(float(conf))
|
||
continue
|
||
if isinstance(item, list) and len(item) >= 2:
|
||
text_data = item[1]
|
||
if isinstance(text_data, tuple) and len(text_data) == 2:
|
||
text, conf = text_data
|
||
if isinstance(text, str) and isinstance(conf, (int, float)):
|
||
texts.append(text.strip())
|
||
confs.append(float(conf))
|
||
continue
|
||
elif isinstance(text_data, str):
|
||
texts.append(text_data.strip())
|
||
confs.append(1.0)
|
||
continue
|
||
ocr_end = time.time()
|
||
ocr_time = ocr_end - ocr_start # 计算OCR阶段耗时
|
||
|
||
if len(texts) != len(confs):
|
||
return (False, "OCR结果格式异常")
|
||
|
||
# 2. 违禁词匹配阶段
|
||
match_start = time.time()
|
||
vio_words = []
|
||
for txt, conf in zip(texts, confs):
|
||
if conf < _conf_threshold:
|
||
continue
|
||
# 用AC自动机匹配当前文本中的所有违禁词
|
||
matched_words = _ac_automaton.match(txt)
|
||
# 全局去重并保持顺序
|
||
for word in matched_words:
|
||
if word not in vio_words:
|
||
vio_words.append(word)
|
||
match_end = time.time()
|
||
match_time = match_end - match_start # 计算匹配阶段耗时
|
||
|
||
has_text = len(texts) > 0
|
||
has_violation = len(vio_words) > 0
|
||
|
||
if not has_text:
|
||
return (False, "未识别到文本")
|
||
elif has_violation:
|
||
return (True, ", ".join(vio_words))
|
||
else:
|
||
return (False, "未检测到违禁词")
|
||
|
||
except Exception as e:
|
||
print(f"OCR detect error: {e}")
|
||
return (False, f"检测错误: {str(e)}")
|
||
finally:
|
||
# 打印各阶段耗时
|
||
total_time = time.time() - total_start
|
||
print(f"当前帧耗时明细:")
|
||
print(f" OCR识别及解析:{ocr_time:.8f}秒")
|
||
print(f" 违禁词匹配:{match_time:.8f}秒")
|
||
print(f" 总耗时:{total_time:.8f}秒") |