340 lines
13 KiB
Python
340 lines
13 KiB
Python
import cv2
|
||
from io import BytesIO
|
||
from PIL import Image
|
||
from mysql.connector import Error as MySQLError
|
||
|
||
from ds.db import db
|
||
|
||
import numpy as np
|
||
import threading
|
||
from insightface.app import FaceAnalysis
|
||
|
||
# 全局变量定义
|
||
_insightface_app = None
|
||
_known_faces_embeddings = {} # 存储已知人脸特征 {姓名: 特征向量}
|
||
_known_faces_names = [] # 存储已知人脸姓名列表
|
||
|
||
|
||
def init_insightface():
|
||
"""初始化InsightFace引擎"""
|
||
global _insightface_app
|
||
if _insightface_app is not None:
|
||
print("InsightFace引擎已初始化,无需重复执行")
|
||
return _insightface_app
|
||
|
||
try:
|
||
print("正在初始化 InsightFace 引擎(模型:buffalo_l)...")
|
||
# 初始化引擎,指定模型路径和计算 providers
|
||
app = FaceAnalysis(
|
||
name='buffalo_l',
|
||
root='~/.insightface',
|
||
providers=['CPUExecutionProvider'] # 如需GPU可添加'CUDAExecutionProvider'
|
||
)
|
||
app.prepare(ctx_id=0, det_size=(640, 640)) # 调整检测尺寸
|
||
print("InsightFace 引擎初始化完成")
|
||
|
||
# 初始化时加载人脸特征库
|
||
init_face_data()
|
||
|
||
_insightface_app = app
|
||
return app
|
||
except Exception as e:
|
||
print(f"InsightFace 初始化失败:{str(e)}")
|
||
_insightface_app = None
|
||
return None
|
||
|
||
|
||
def init_face_data():
|
||
"""初始化或更新人脸特征库(清空旧数据,避免重复)"""
|
||
global _known_faces_embeddings, _known_faces_names
|
||
# 清空原有数据,防止重复加载
|
||
_known_faces_embeddings.clear()
|
||
_known_faces_names.clear()
|
||
|
||
try:
|
||
face_data = get_all_face_name_with_eigenvalue() # 假设该函数已定义
|
||
print(f"已加载 {len(face_data)} 个人脸数据")
|
||
for person_name, eigenvalue_data in face_data.items():
|
||
# 解析特征值(支持numpy数组或字符串格式)
|
||
if isinstance(eigenvalue_data, np.ndarray):
|
||
eigenvalue = eigenvalue_data.astype(np.float32)
|
||
elif isinstance(eigenvalue_data, str):
|
||
# 增强字符串解析:支持逗号/空格分隔,清理特殊字符
|
||
cleaned = (eigenvalue_data
|
||
.replace("[", "").replace("]", "")
|
||
.replace("\n", "").replace(",", " ")
|
||
.strip())
|
||
values = [v for v in cleaned.split() if v] # 过滤空字符串
|
||
if not values:
|
||
print(f"特征值解析失败(空值),跳过 {person_name}")
|
||
continue
|
||
eigenvalue = np.array(list(map(float, values)), dtype=np.float32)
|
||
else:
|
||
print(f"不支持的特征值类型({type(eigenvalue_data)}),跳过 {person_name}")
|
||
continue
|
||
|
||
# 特征值归一化(确保相似度计算一致性)
|
||
norm = np.linalg.norm(eigenvalue)
|
||
if norm == 0:
|
||
print(f"特征值为零向量,跳过 {person_name}")
|
||
continue
|
||
eigenvalue = eigenvalue / norm
|
||
|
||
# 更新全局特征库
|
||
_known_faces_embeddings[person_name] = eigenvalue
|
||
_known_faces_names.append(person_name)
|
||
|
||
print(f"成功加载 {len(_known_faces_names)} 个人脸的特征库")
|
||
except Exception as e:
|
||
print(f"加载人脸特征库失败: {e}")
|
||
|
||
|
||
def update_face_data():
|
||
"""更新人脸特征库(清空旧数据,加载最新数据)"""
|
||
global _known_faces_embeddings, _known_faces_names
|
||
|
||
print("开始更新人脸特征库...")
|
||
|
||
# 清空原有数据
|
||
_known_faces_embeddings.clear()
|
||
_known_faces_names.clear()
|
||
|
||
try:
|
||
# 获取最新人脸数据
|
||
face_data = get_all_face_name_with_eigenvalue()
|
||
print(f"获取到 {len(face_data)} 条最新人脸数据")
|
||
|
||
# 处理并加载新数据(复用原有解析逻辑)
|
||
for person_name, eigenvalue_data in face_data.items():
|
||
# 解析特征值(支持numpy数组或字符串格式)
|
||
if isinstance(eigenvalue_data, np.ndarray):
|
||
eigenvalue = eigenvalue_data.astype(np.float32)
|
||
elif isinstance(eigenvalue_data, str):
|
||
# 增强字符串解析:支持逗号/空格分隔,清理特殊字符
|
||
cleaned = (eigenvalue_data
|
||
.replace("[", "").replace("]", "")
|
||
.replace("\n", "").replace(",", " ")
|
||
.strip())
|
||
values = [v for v in cleaned.split() if v] # 过滤空字符串
|
||
if not values:
|
||
print(f"特征值解析失败(空值),跳过 {person_name}")
|
||
continue
|
||
eigenvalue = np.array(list(map(float, values)), dtype=np.float32)
|
||
else:
|
||
print(f"不支持的特征值类型({type(eigenvalue_data)}),跳过 {person_name}")
|
||
continue
|
||
|
||
# 特征值归一化(确保相似度计算一致性)
|
||
norm = np.linalg.norm(eigenvalue)
|
||
if norm == 0:
|
||
print(f"特征值为零向量,跳过 {person_name}")
|
||
continue
|
||
eigenvalue = eigenvalue / norm
|
||
|
||
# 更新全局特征库
|
||
_known_faces_embeddings[person_name] = eigenvalue
|
||
_known_faces_names.append(person_name)
|
||
|
||
print(f"人脸特征库更新完成,共加载 {len(_known_faces_names)} 个人脸数据")
|
||
return True # 更新成功
|
||
except Exception as e:
|
||
print(f"人脸特征库更新失败: {e}")
|
||
return False # 更新失败
|
||
|
||
|
||
def detect(frame, similarity_threshold=0.4):
|
||
global _insightface_app, _known_faces_embeddings
|
||
|
||
# 校验输入有效性
|
||
if frame is None or frame.size == 0:
|
||
return (False, "无效的输入帧数据")
|
||
|
||
# 校验引擎和特征库状态
|
||
if not _insightface_app:
|
||
return (False, "人脸引擎未初始化")
|
||
if not _known_faces_embeddings:
|
||
return (False, "人脸特征库为空")
|
||
|
||
try:
|
||
# 执行人脸检测与特征提取
|
||
faces = _insightface_app.get(frame)
|
||
except Exception as e:
|
||
return (False, f"检测错误: {str(e)}")
|
||
|
||
result_parts = []
|
||
has_matched_known_face = False # 是否有匹配到已知人脸
|
||
|
||
for face in faces:
|
||
# 归一化当前人脸特征
|
||
face_embedding = face.embedding.astype(np.float32)
|
||
norm = np.linalg.norm(face_embedding)
|
||
if norm == 0:
|
||
result_parts.append("检测到人脸但特征值为零向量(忽略)")
|
||
continue
|
||
face_embedding = face_embedding / norm
|
||
|
||
# 与已知特征库比对
|
||
max_similarity, best_match_name = -1.0, "Unknown"
|
||
for name, known_emb in _known_faces_embeddings.items():
|
||
similarity = np.dot(face_embedding, known_emb) # 余弦相似度
|
||
if similarity > max_similarity:
|
||
max_similarity = similarity
|
||
best_match_name = name
|
||
|
||
# 判断是否匹配成功
|
||
is_matched = max_similarity >= similarity_threshold
|
||
|
||
if is_matched:
|
||
has_matched_known_face = True
|
||
|
||
# 记录结果(边界框转为整数列表)
|
||
bbox = face.bbox.astype(int).tolist()
|
||
result_parts.append(
|
||
f"{'匹配' if is_matched else '未匹配'}: {best_match_name} "
|
||
f"(相似度: {max_similarity:.2f}, 边界框: {bbox})"
|
||
)
|
||
|
||
# 构建最终结果
|
||
result_str = "未检测到人脸" if not result_parts else "; ".join(result_parts)
|
||
return (has_matched_known_face, result_str)
|
||
|
||
|
||
# 上传图片并提取特征
|
||
def add_binary_data(binary_data):
|
||
"""
|
||
接收单张图片的二进制数据、提取特征并保存
|
||
返回:(True, 特征值numpy数组) 或 (False, 错误信息字符串)
|
||
"""
|
||
global _insightface_app, _feature_list
|
||
|
||
# 1. 先检查引擎是否初始化成功
|
||
if not _insightface_app:
|
||
init_result = init_insightface() # 尝试重新初始化
|
||
if not init_result:
|
||
error_msg = "InsightFace引擎未初始化、无法检测人脸"
|
||
print(error_msg)
|
||
return False, error_msg
|
||
|
||
try:
|
||
# 2. 验证二进制数据有效性
|
||
if len(binary_data) < 1024: # 过滤过小的无效图片(小于1KB)
|
||
error_msg = f"图片过小({len(binary_data)}字节)、可能不是有效图片"
|
||
print(error_msg)
|
||
return False, error_msg
|
||
|
||
# 3. 二进制数据转CV2格式(关键步骤、避免通道错误)
|
||
try:
|
||
img = Image.open(BytesIO(binary_data)).convert("RGB") # 强制转RGB
|
||
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) # InsightFace需要BGR格式
|
||
except Exception as e:
|
||
error_msg = f"图片格式转换失败:{str(e)}"
|
||
print(error_msg)
|
||
return False, error_msg
|
||
|
||
# 4. 检查图片尺寸(避免极端尺寸导致检测失败)
|
||
height, width = frame.shape[:2]
|
||
if height < 64 or width < 64: # 人脸检测最小建议尺寸
|
||
error_msg = f"图片尺寸过小({width}x{height})、需至少64x64像素"
|
||
print(error_msg)
|
||
return False, error_msg
|
||
|
||
# 5. 调用InsightFace检测人脸
|
||
print(f"开始检测人脸(图片尺寸:{width}x{height}、格式:BGR)")
|
||
faces = _insightface_app.get(frame)
|
||
|
||
if not faces:
|
||
error_msg = "未检测到人脸(请确保图片包含清晰正面人脸、无遮挡、不模糊)"
|
||
print(error_msg)
|
||
return False, error_msg
|
||
|
||
# 6. 提取特征并保存
|
||
current_feature = faces[0].embedding
|
||
_feature_list.append(current_feature)
|
||
print(f"人脸检测成功、提取特征值(维度:{current_feature.shape[0]})、累计特征数:{len(_feature_list)}")
|
||
return True, current_feature
|
||
|
||
except Exception as e:
|
||
error_msg = f"处理图片时发生异常:{str(e)}"
|
||
print(error_msg)
|
||
return False, error_msg
|
||
|
||
|
||
# 获取数据库最新的人脸及其特征
|
||
def get_all_face_name_with_eigenvalue() -> dict:
|
||
conn = None
|
||
cursor = None
|
||
try:
|
||
conn = db.get_connection()
|
||
cursor = conn.cursor(dictionary=True)
|
||
query = "SELECT name, eigenvalue FROM face WHERE name IS NOT NULL"
|
||
cursor.execute(query)
|
||
faces = cursor.fetchall()
|
||
|
||
name_to_eigenvalues = {}
|
||
for face in faces:
|
||
name = face["name"]
|
||
eigenvalue = face["eigenvalue"]
|
||
if name in name_to_eigenvalues:
|
||
name_to_eigenvalues[name].append(eigenvalue)
|
||
else:
|
||
name_to_eigenvalues[name] = [eigenvalue]
|
||
|
||
face_dict = {}
|
||
for name, eigenvalues in name_to_eigenvalues.items():
|
||
if len(eigenvalues) > 1:
|
||
face_dict[name] = get_average_feature(eigenvalues)
|
||
else:
|
||
face_dict[name] = eigenvalues[0]
|
||
|
||
return face_dict
|
||
|
||
except MySQLError as e:
|
||
raise Exception(f"获取人脸特征失败: {str(e)}") from e
|
||
finally:
|
||
db.close_connection(conn, cursor)
|
||
|
||
|
||
# 获取平均特征值
|
||
def get_average_feature(features=None):
|
||
global _feature_list
|
||
try:
|
||
if features is None:
|
||
features = _feature_list
|
||
if not isinstance(features, list) or len(features) == 0:
|
||
print("输入必须是包含至少一个特征值的列表")
|
||
return None
|
||
|
||
processed_features = []
|
||
for i, embedding in enumerate(features):
|
||
try:
|
||
if isinstance(embedding, str):
|
||
embedding_str = embedding.replace('[', '').replace(']', '').replace(',', ' ').strip()
|
||
embedding_list = [float(num) for num in embedding_str.split() if num.strip()]
|
||
embedding_np = np.array(embedding_list, dtype=np.float32)
|
||
else:
|
||
embedding_np = np.array(embedding, dtype=np.float32)
|
||
|
||
if len(embedding_np.shape) == 1:
|
||
processed_features.append(embedding_np)
|
||
print(f"已添加第 {i + 1} 个特征值用于计算平均值")
|
||
else:
|
||
print(f"跳过第 {i + 1} 个特征值:不是一维数组")
|
||
except Exception as e:
|
||
print(f"处理第 {i + 1} 个特征值时出错:{str(e)}")
|
||
|
||
if not processed_features:
|
||
print("没有有效的特征值用于计算平均值")
|
||
return None
|
||
|
||
dims = {feat.shape[0] for feat in processed_features}
|
||
if len(dims) > 1:
|
||
print(f"特征值维度不一致:{dims}、无法计算平均值")
|
||
return None
|
||
|
||
avg_feature = np.mean(processed_features, axis=0)
|
||
print(f"计算成功:{len(processed_features)} 个特征值的平均向量(维度:{avg_feature.shape[0]})")
|
||
return avg_feature
|
||
except Exception as e:
|
||
print(f"计算平均特征值出错:{str(e)}")
|
||
return None
|