Files
video_detect/service/ocr_service.py
2025-09-30 17:17:20 +08:00

131 lines
4.6 KiB
Python

# 首先添加NumPy兼容处理
import numpy as np
# 修复np.int已弃用的问题
if not hasattr(np, 'int'):
np.int = int
from paddleocr import PaddleOCR
from service.sensitive_service import get_all_sensitive_words
_ocr_engine = None
_forbidden_words = set()
_conf_threshold = 0.5
def set_forbidden_words(new_words):
global _forbidden_words
if not isinstance(new_words, (set, list, tuple)):
raise TypeError("新违禁词必须是集合、列表或元组类型")
_forbidden_words = set(new_words) # 确保是集合类型
print(f"已通过函数更新违禁词,当前数量: {len(_forbidden_words)}")
def load_forbidden_words():
global _forbidden_words
try:
_forbidden_words = get_all_sensitive_words()
print(f"加载的违禁词数量: {len(_forbidden_words)}")
except Exception as e:
print(f"Forbidden words load error: {e}")
return False
return True
def init_ocr_engine():
global _ocr_engine
try:
_ocr_engine = PaddleOCR(
use_angle_cls=True,
lang="ch",
show_log=False,
use_gpu=True,
max_text_length=1024
)
load_result = load_forbidden_words()
if not load_result:
print("警告:违禁词加载失败,可能影响检测功能")
print("OCR引擎初始化完成")
return True
except Exception as e:
print(f"OCR引擎初始化错误: {e}")
_ocr_engine = None
return False
def detect(frame, conf_threshold=0.8):
print("开始进行OCR检测...")
try:
ocr_res = _ocr_engine.ocr(frame, cls=True)
if not ocr_res or not isinstance(ocr_res, list):
return (False, "无OCR结果")
texts = []
confs = []
for line in ocr_res:
if line is None:
continue
if isinstance(line, list):
items_to_process = line
else:
items_to_process = [line]
for item in items_to_process:
if isinstance(item, list) and len(item) == 4:
is_coordinate = True
for point in item:
if not (isinstance(point, list) and len(point) == 2 and
all(isinstance(coord, (int, float)) for coord in point)):
is_coordinate = False
break
if is_coordinate:
continue
if isinstance(item, list) and all(isinstance(x, (int, float)) for x in item):
continue
if isinstance(item, tuple) and len(item) == 2:
text, conf = item
if isinstance(text, str) and isinstance(conf, (int, float)):
texts.append(text.strip())
confs.append(float(conf))
continue
if isinstance(item, list) and len(item) >= 2:
text_data = item[1]
if isinstance(text_data, tuple) and len(text_data) == 2:
text, conf = text_data
if isinstance(text, str) and isinstance(conf, (int, float)):
texts.append(text.strip())
confs.append(float(conf))
continue
elif isinstance(text_data, str):
texts.append(text_data.strip())
confs.append(1.0)
continue
print(f"无法解析的OCR结果格式: {item}")
if len(texts) != len(confs):
return (False, "OCR结果格式异常")
# 收集所有识别到的违禁词(去重且保持出现顺序)
vio_words = []
for txt, conf in zip(texts, confs):
if conf < _conf_threshold: # 过滤低置信度结果
continue
# 提取当前文本中包含的违禁词
matched = [w for w in _forbidden_words if w in txt]
# 仅添加未记录过的违禁词(去重)
for word in matched:
if word not in vio_words:
vio_words.append(word)
has_text = len(texts) > 0
has_violation = len(vio_words) > 0
if not has_text:
return (False, "未识别到文本")
elif has_violation:
# 多个违禁词用逗号拼接
return (True, ", ".join(vio_words))
else:
return (False, "未检测到违禁词")
except Exception as e:
print(f"OCR detect error: {e}")
return (False, f"检测错误: {str(e)}")