484 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			484 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| // Extend the Array class
 | |
| Array.prototype.max = function() {
 | |
|     return Math.max.apply(null, this);
 | |
| };
 | |
| Array.prototype.min = function() {
 | |
|     return Math.min.apply(null, this);
 | |
| };
 | |
| Array.prototype.mean = function() {
 | |
|     var i, sum;
 | |
|     for(i=0,sum=0;i<this.length;i++)
 | |
| 	sum += this[i];
 | |
|     return sum / this.length;
 | |
| };
 | |
| Array.prototype.pip = function(x, y) {
 | |
|     var i, j, c = false;
 | |
|     for(i=0,j=this.length-1;i<this.length;j=i++) {
 | |
| 	if( ((this[i][1]>y) != (this[j][1]>y)) &&
 | |
| 	    (x<(this[j][0]-this[i][0]) * (y-this[i][1]) / (this[j][1]-this[i][1]) + this[i][0]) ) {
 | |
| 	    c = !c;
 | |
| 	}
 | |
|     }
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| var kriging = function() {
 | |
|     var kriging = {};
 | |
| 
 | |
|     var createArrayWithValues = function(value, n) {
 | |
|         var array = [];
 | |
|         for ( var i = 0; i < n; i++) {
 | |
|             array.push(value);
 | |
|         }
 | |
|         return array;
 | |
|     },
 | |
| 
 | |
|     // Matrix algebra
 | |
|     kriging_matrix_diag = function(c, n) {
 | |
|         var Z = createArrayWithValues(0, n * n);
 | |
|         for(i=0;i<n;i++) Z[i*n+i] = c;
 | |
|         return Z;
 | |
|     },
 | |
|     kriging_matrix_transpose = function(X, n, m) {
 | |
| 	var i, j, Z = Array(m*n);
 | |
| 	for(i=0;i<n;i++)
 | |
| 	    for(j=0;j<m;j++)
 | |
| 		Z[j*n+i] = X[i*m+j];
 | |
| 	return Z;
 | |
|     },
 | |
|     kriging_matrix_scale = function(X, c, n, m) {
 | |
| 	var i, j;
 | |
| 	for(i=0;i<n;i++)
 | |
| 	    for(j=0;j<m;j++)
 | |
| 		X[i*m+j] *= c;
 | |
|     },
 | |
|     kriging_matrix_add = function(X, Y, n, m) {
 | |
| 	var i, j, Z = Array(n*m);
 | |
| 	for(i=0;i<n;i++)
 | |
| 	    for(j=0;j<m;j++)
 | |
| 		Z[i*m+j] = X[i*m+j] + Y[i*m+j];
 | |
| 	return Z;
 | |
|     },
 | |
|     // Naive matrix multiplication
 | |
|     kriging_matrix_multiply = function(X, Y, n, m, p) {
 | |
| 	var i, j, k, Z = Array(n*p);
 | |
| 	for(i=0;i<n;i++) {
 | |
| 	    for(j=0;j<p;j++) {
 | |
| 		Z[i*p+j] = 0;
 | |
| 		for(k=0;k<m;k++)
 | |
| 		    Z[i*p+j] += X[i*m+k]*Y[k*p+j];
 | |
| 	    }
 | |
| 	}
 | |
| 	return Z;
 | |
|     },
 | |
|     // Cholesky decomposition
 | |
|     kriging_matrix_chol = function(X, n) {
 | |
| 	var i, j, k, sum, p = Array(n);
 | |
| 	for(i=0;i<n;i++) p[i] = X[i*n+i];
 | |
| 	for(i=0;i<n;i++) {
 | |
| 	    for(j=0;j<i;j++)
 | |
| 		p[i] -= X[i*n+j]*X[i*n+j];
 | |
| 	    if(p[i]<=0) return false;
 | |
| 	    p[i] = Math.sqrt(p[i]);
 | |
| 	    for(j=i+1;j<n;j++) {
 | |
| 		for(k=0;k<i;k++)
 | |
| 		    X[j*n+i] -= X[j*n+k]*X[i*n+k];
 | |
| 		X[j*n+i] /= p[i];
 | |
| 	    }
 | |
| 	}
 | |
| 	for(i=0;i<n;i++) X[i*n+i] = p[i];
 | |
| 	return true;
 | |
|     },
 | |
|     // Inversion of cholesky decomposition
 | |
|     kriging_matrix_chol2inv = function(X, n) {
 | |
| 	var i, j, k, sum;
 | |
| 	for(i=0;i<n;i++) {
 | |
| 	    X[i*n+i] = 1/X[i*n+i];
 | |
| 	    for(j=i+1;j<n;j++) {
 | |
| 		sum = 0;
 | |
| 		for(k=i;k<j;k++)
 | |
| 		    sum -= X[j*n+k]*X[k*n+i];
 | |
| 		X[j*n+i] = sum/X[j*n+j];
 | |
| 	    }
 | |
| 	}
 | |
| 	for(i=0;i<n;i++)
 | |
| 	    for(j=i+1;j<n;j++)
 | |
| 		X[i*n+j] = 0;
 | |
| 	for(i=0;i<n;i++) {
 | |
| 	    X[i*n+i] *= X[i*n+i];
 | |
| 	    for(k=i+1;k<n;k++)
 | |
| 		X[i*n+i] += X[k*n+i]*X[k*n+i];
 | |
| 	    for(j=i+1;j<n;j++)
 | |
| 		for(k=j;k<n;k++)
 | |
| 		    X[i*n+j] += X[k*n+i]*X[k*n+j];
 | |
| 	}
 | |
| 	for(i=0;i<n;i++)
 | |
| 	    for(j=0;j<i;j++)
 | |
| 		X[i*n+j] = X[j*n+i];
 | |
| 
 | |
|     },
 | |
|     // Inversion via gauss-jordan elimination
 | |
|     kriging_matrix_solve = function(X, n) {
 | |
| 	var m = n;
 | |
| 	var b = Array(n*n);
 | |
| 	var indxc = Array(n);
 | |
| 	var indxr = Array(n);
 | |
| 	var ipiv = Array(n);
 | |
| 	var i, icol, irow, j, k, l, ll;
 | |
| 	var big, dum, pivinv, temp;
 | |
| 
 | |
| 	for(i=0;i<n;i++)
 | |
| 	    for(j=0;j<n;j++) {
 | |
| 		if(i==j) b[i*n+j] = 1;
 | |
| 		else b[i*n+j] = 0;
 | |
| 	    }
 | |
| 	for(j=0;j<n;j++) ipiv[j] = 0;
 | |
| 	for(i=0;i<n;i++) {
 | |
| 	    big = 0;
 | |
| 	    for(j=0;j<n;j++) {
 | |
| 		if(ipiv[j]!=1) {
 | |
| 		    for(k=0;k<n;k++) {
 | |
| 			if(ipiv[k]==0) {
 | |
| 			    if(Math.abs(X[j*n+k])>=big) {
 | |
| 				big = Math.abs(X[j*n+k]);
 | |
| 				irow = j;
 | |
| 				icol = k;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	    ++(ipiv[icol]);
 | |
| 
 | |
| 	    if(irow!=icol) {
 | |
| 		for(l=0;l<n;l++) {
 | |
| 		    temp = X[irow*n+l];
 | |
| 		    X[irow*n+l] = X[icol*n+l];
 | |
| 		    X[icol*n+l] = temp;
 | |
| 		}
 | |
| 		for(l=0;l<m;l++) {
 | |
| 		    temp = b[irow*n+l];
 | |
| 		    b[irow*n+l] = b[icol*n+l];
 | |
| 		    b[icol*n+l] = temp;
 | |
| 		}
 | |
| 	    }
 | |
| 	    indxr[i] = irow;
 | |
| 	    indxc[i] = icol;
 | |
| 
 | |
| 	    if(X[icol*n+icol]==0) return false; // Singular
 | |
| 
 | |
| 	    pivinv = 1 / X[icol*n+icol];
 | |
| 	    X[icol*n+icol] = 1;
 | |
| 	    for(l=0;l<n;l++) X[icol*n+l] *= pivinv;
 | |
| 	    for(l=0;l<m;l++) b[icol*n+l] *= pivinv;
 | |
| 
 | |
| 	    for(ll=0;ll<n;ll++) {
 | |
| 		if(ll!=icol) {
 | |
| 		    dum = X[ll*n+icol];
 | |
| 		    X[ll*n+icol] = 0;
 | |
| 		    for(l=0;l<n;l++) X[ll*n+l] -= X[icol*n+l]*dum;
 | |
| 		    for(l=0;l<m;l++) b[ll*n+l] -= b[icol*n+l]*dum;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	for(l=(n-1);l>=0;l--)
 | |
| 	    if(indxr[l]!=indxc[l]) {
 | |
| 		for(k=0;k<n;k++) {
 | |
| 		    temp = X[k*n+indxr[l]];
 | |
| 		    X[k*n+indxr[l]] = X[k*n+indxc[l]];
 | |
| 		    X[k*n+indxc[l]] = temp;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	return true;
 | |
|     },
 | |
| 
 | |
|     // Variogram models
 | |
|     kriging_variogram_gaussian = function(h, nugget, range, sill, A) {
 | |
| 	return nugget + ((sill-nugget)/range)*
 | |
| 	( 1.0 - Math.exp(-(1.0/A)*Math.pow(h/range, 2)) );
 | |
|     },
 | |
|     kriging_variogram_exponential = function(h, nugget, range, sill, A) {
 | |
| 	return nugget + ((sill-nugget)/range)*
 | |
| 	( 1.0 - Math.exp(-(1.0/A) * (h/range)) );
 | |
|     },
 | |
|     kriging_variogram_spherical = function(h, nugget, range, sill, A) {
 | |
| 	if(h>range) return nugget + (sill-nugget)/range;
 | |
| 	return nugget + ((sill-nugget)/range)*
 | |
| 	( 1.5*(h/range) - 0.5*Math.pow(h/range, 3) );
 | |
|     };
 | |
| 
 | |
|     // Train using gaussian processes with bayesian priors
 | |
|     kriging.train = function(t, x, y, model, sigma2, alpha) {
 | |
| 	var variogram = {
 | |
| 	    t      : t,
 | |
| 	    x      : x,
 | |
| 	    y      : y,
 | |
| 	    nugget : 0.0,
 | |
| 	    range  : 0.0,
 | |
| 	    sill   : 0.0,
 | |
| 	    A      : 1/3,
 | |
| 	    n      : 0
 | |
| 	};
 | |
| 	switch(model) {
 | |
| 	case "gaussian":
 | |
| 	    variogram.model = kriging_variogram_gaussian;
 | |
| 	    break;
 | |
| 	case "exponential":
 | |
| 	    variogram.model = kriging_variogram_exponential;
 | |
| 	    break;
 | |
| 	case "spherical":
 | |
| 	    variogram.model = kriging_variogram_spherical;
 | |
| 	    break;
 | |
| 	};
 | |
| 
 | |
| 	// Lag distance/semivariance
 | |
| 	var i, j, k, l, n = t.length;
 | |
| 	var distance = Array((n*n-n)/2);
 | |
| 	for(i=0,k=0;i<n;i++)
 | |
| 	    for(j=0;j<i;j++,k++) {
 | |
| 		distance[k] = Array(2);
 | |
| 		distance[k][0] = Math.pow(
 | |
| 		    Math.pow(x[i]-x[j], 2)+
 | |
| 		    Math.pow(y[i]-y[j], 2), 0.5);
 | |
| 		distance[k][1] = Math.abs(t[i]-t[j]);
 | |
| 	    }
 | |
| 	distance.sort(function(a, b) { return a[0] - b[0]; });
 | |
| 	variogram.range = distance[(n*n-n)/2-1][0];
 | |
| 
 | |
| 	// Bin lag distance
 | |
| 	var lags = ((n*n-n)/2)>30?30:(n*n-n)/2;
 | |
| 	var tolerance = variogram.range/lags;
 | |
| 	var lag = createArrayWithValues(0,lags);
 | |
| 	var semi = createArrayWithValues(0,lags);
 | |
| 	if(lags<30) {
 | |
| 	    for(l=0;l<lags;l++) {
 | |
| 		lag[l] = distance[l][0];
 | |
| 		semi[l] = distance[l][1];
 | |
| 	    }
 | |
| 	}
 | |
| 	else {
 | |
| 	    for(i=0,j=0,k=0,l=0;i<lags&&j<((n*n-n)/2);i++,k=0) {
 | |
| 		while( distance[j][0]<=((i+1)*tolerance) ) {
 | |
| 		    lag[l] += distance[j][0];
 | |
| 		    semi[l] += distance[j][1];
 | |
| 		    j++;k++;
 | |
| 		    if(j>=((n*n-n)/2)) break;
 | |
| 		}
 | |
| 		if(k>0) {
 | |
| 		    lag[l] /= k;
 | |
| 		    semi[l] /= k;
 | |
| 		    l++;
 | |
| 		}
 | |
| 	    }
 | |
| 	    if(l<2) return variogram; // Error: Not enough points
 | |
| 	}
 | |
| 
 | |
| 	// Feature transformation
 | |
| 	n = l;
 | |
| 	variogram.range = lag[n-1]-lag[0];
 | |
| 	 var X = createArrayWithValues(1,2 * n);
 | |
| 	var Y = Array(n);
 | |
| 	var A = variogram.A;
 | |
| 	for(i=0;i<n;i++) {
 | |
| 	    switch(model) {
 | |
| 	    case "gaussian":
 | |
| 		X[i*2+1] = 1.0-Math.exp(-(1.0/A)*Math.pow(lag[i]/variogram.range, 2));
 | |
| 		break;
 | |
| 	    case "exponential":
 | |
| 		X[i*2+1] = 1.0-Math.exp(-(1.0/A)*lag[i]/variogram.range);
 | |
| 		break;
 | |
| 	    case "spherical":
 | |
| 		X[i*2+1] = 1.5*(lag[i]/variogram.range)-
 | |
| 		    0.5*Math.pow(lag[i]/variogram.range, 3);
 | |
| 		break;
 | |
| 	    };
 | |
| 	    Y[i] = semi[i];
 | |
| 	}
 | |
| 
 | |
| 	// Least squares
 | |
| 	var Xt = kriging_matrix_transpose(X, n, 2);
 | |
| 	var Z = kriging_matrix_multiply(Xt, X, 2, n, 2);
 | |
| 	Z = kriging_matrix_add(Z, kriging_matrix_diag(1/alpha, 2), 2, 2);
 | |
| 	var cloneZ = Z.slice(0);
 | |
| 	if(kriging_matrix_chol(Z, 2))
 | |
| 	    kriging_matrix_chol2inv(Z, 2);
 | |
| 	else {
 | |
| 	    kriging_matrix_solve(cloneZ, 2);
 | |
| 	    Z = cloneZ;
 | |
| 	}
 | |
| 	var W = kriging_matrix_multiply(kriging_matrix_multiply(Z, Xt, 2, 2, n), Y, 2, n, 1);
 | |
| 
 | |
| 	// Variogram parameters
 | |
| 	variogram.nugget = W[0];
 | |
| 	variogram.sill = W[1]*variogram.range+variogram.nugget;
 | |
| 	variogram.n = x.length;
 | |
| 
 | |
| 	// Gram matrix with prior
 | |
| 	n = x.length;
 | |
| 	var K = Array(n*n);
 | |
| 	for(i=0;i<n;i++) {
 | |
| 	    for(j=0;j<i;j++) {
 | |
| 		K[i*n+j] = variogram.model(Math.pow(Math.pow(x[i]-x[j], 2)+
 | |
| 						    Math.pow(y[i]-y[j], 2), 0.5),
 | |
| 					   variogram.nugget,
 | |
| 					   variogram.range,
 | |
| 					   variogram.sill,
 | |
| 					   variogram.A);
 | |
| 		K[j*n+i] = K[i*n+j];
 | |
| 	    }
 | |
| 	    K[i*n+i] = variogram.model(0, variogram.nugget,
 | |
| 				       variogram.range,
 | |
| 				       variogram.sill,
 | |
| 				       variogram.A);
 | |
| 	}
 | |
| 
 | |
| 	// Inverse penalized Gram matrix projected to target vector
 | |
| 	var C = kriging_matrix_add(K, kriging_matrix_diag(sigma2, n), n, n);
 | |
| 	var cloneC = C.slice(0);
 | |
| 	if(kriging_matrix_chol(C, n))
 | |
| 	    kriging_matrix_chol2inv(C, n);
 | |
| 	else {
 | |
| 	    kriging_matrix_solve(cloneC, n);
 | |
| 	    C = cloneC;
 | |
| 	}
 | |
| 
 | |
| 	// Copy unprojected inverted matrix as K
 | |
| 	var K = C.slice(0);
 | |
| 	var M = kriging_matrix_multiply(C, t, n, n, 1);
 | |
| 	variogram.K = K;
 | |
| 	variogram.M = M;
 | |
| 
 | |
| 	return variogram;
 | |
|     };
 | |
| 
 | |
|     // Model prediction
 | |
|     kriging.predict = function(x, y, variogram) {
 | |
| 	var i, k = Array(variogram.n);
 | |
| 	for(i=0;i<variogram.n;i++)
 | |
| 	    k[i] = variogram.model(Math.pow(Math.pow(x-variogram.x[i], 2)+
 | |
| 					    Math.pow(y-variogram.y[i], 2), 0.5),
 | |
| 				   variogram.nugget, variogram.range,
 | |
| 				   variogram.sill, variogram.A);
 | |
| 	return kriging_matrix_multiply(k, variogram.M, 1, variogram.n, 1)[0];
 | |
|     };
 | |
|     kriging.variance = function(x, y, variogram) {
 | |
| 	var i, k = Array(variogram.n);
 | |
| 	for(i=0;i<variogram.n;i++)
 | |
| 	    k[i] = variogram.model(Math.pow(Math.pow(x-variogram.x[i], 2)+
 | |
| 					    Math.pow(y-variogram.y[i], 2), 0.5),
 | |
| 				   variogram.nugget, variogram.range,
 | |
| 				   variogram.sill, variogram.A);
 | |
| 	return variogram.model(0, variogram.nugget, variogram.range,
 | |
| 			variogram.sill, variogram.A)+
 | |
| 	kriging_matrix_multiply(kriging_matrix_multiply(k, variogram.K,
 | |
| 							1, variogram.n, variogram.n),
 | |
| 				k, 1, variogram.n, 1)[0];
 | |
|     };
 | |
| 
 | |
|     // Gridded matrices or contour paths
 | |
|     kriging.grid = function(polygons, variogram, width) {
 | |
| 	var i, j, k, n = polygons.length;
 | |
| 	if(n==0) return;
 | |
| 
 | |
| 	// Boundaries of polygons space
 | |
| 	var xlim = [polygons[0][0][0], polygons[0][0][0]];
 | |
| 	var ylim = [polygons[0][0][1], polygons[0][0][1]];
 | |
| 	for(i=0;i<n;i++) // Polygons
 | |
| 	    for(j=0;j<polygons[i].length;j++) { // Vertices
 | |
| 		if(polygons[i][j][0]<xlim[0])
 | |
| 		    xlim[0] = polygons[i][j][0];
 | |
| 		if(polygons[i][j][0]>xlim[1])
 | |
| 		    xlim[1] = polygons[i][j][0];
 | |
| 		if(polygons[i][j][1]<ylim[0])
 | |
| 		    ylim[0] = polygons[i][j][1];
 | |
| 		if(polygons[i][j][1]>ylim[1])
 | |
| 		    ylim[1] = polygons[i][j][1];
 | |
| 	    }
 | |
| 
 | |
| 	// Alloc for O(n^2) space
 | |
| 	var xtarget, ytarget;
 | |
| 	var a = Array(2), b = Array(2);
 | |
| 	var lxlim = Array(2); // Local dimensions
 | |
| 	var lylim = Array(2); // Local dimensions
 | |
| 	var x = Math.ceil((xlim[1]-xlim[0])/width);
 | |
| 	var y = Math.ceil((ylim[1]-ylim[0])/width);
 | |
| 
 | |
| 	var A = Array(x+1);
 | |
| 	for(i=0;i<=x;i++) A[i] = Array(y+1);
 | |
| 	for(i=0;i<n;i++) {
 | |
| 	    // Range for polygons[i]
 | |
| 	    lxlim[0] = polygons[i][0][0];
 | |
| 	    lxlim[1] = lxlim[0];
 | |
| 	    lylim[0] = polygons[i][0][1];
 | |
| 	    lylim[1] = lylim[0];
 | |
| 	    for(j=1;j<polygons[i].length;j++) { // Vertices
 | |
| 		if(polygons[i][j][0]<lxlim[0])
 | |
| 		    lxlim[0] = polygons[i][j][0];
 | |
| 		if(polygons[i][j][0]>lxlim[1])
 | |
| 		    lxlim[1] = polygons[i][j][0];
 | |
| 		if(polygons[i][j][1]<lylim[0])
 | |
| 		    lylim[0] = polygons[i][j][1];
 | |
| 		if(polygons[i][j][1]>lylim[1])
 | |
| 		    lylim[1] = polygons[i][j][1];
 | |
| 	    }
 | |
| 
 | |
| 	    // Loop through polygon subspace
 | |
| 	    a[0] = Math.floor(((lxlim[0]-((lxlim[0]-xlim[0])%width)) - xlim[0])/width);
 | |
| 	    a[1] = Math.ceil(((lxlim[1]-((lxlim[1]-xlim[1])%width)) - xlim[0])/width);
 | |
| 	    b[0] = Math.floor(((lylim[0]-((lylim[0]-ylim[0])%width)) - ylim[0])/width);
 | |
| 	    b[1] = Math.ceil(((lylim[1]-((lylim[1]-ylim[1])%width)) - ylim[0])/width);
 | |
| 	    for(j=a[0];j<=a[1];j++)
 | |
| 		for(k=b[0];k<=b[1];k++) {
 | |
| 		    xtarget = xlim[0] + j*width;
 | |
| 		    ytarget = ylim[0] + k*width;
 | |
| 		    if(polygons[i].pip(xtarget, ytarget))
 | |
| 			A[j][k] = kriging.predict(xtarget,
 | |
| 						  ytarget,
 | |
| 						  variogram);
 | |
| 		}
 | |
| 	}
 | |
| 	A.xlim = xlim;
 | |
| 	A.ylim = ylim;
 | |
| 	A.zlim = [variogram.t.min(), variogram.t.max()];
 | |
| 	A.width = width;
 | |
| 	return A;
 | |
|     };
 | |
|     kriging.contour = function(value, polygons, variogram) {
 | |
| 
 | |
|     };
 | |
| 
 | |
|     // Plotting on the DOM
 | |
|     kriging.plot = function(canvas, grid, xlim, ylim, colors) {
 | |
| 	// Clear screen
 | |
| 	var ctx = canvas.getContext("2d");
 | |
| 	ctx.clearRect(0, 0, canvas.width, canvas.height);
 | |
| 
 | |
| 	// Starting boundaries
 | |
| 	var range = [xlim[1]-xlim[0], ylim[1]-ylim[0], grid.zlim[1]-grid.zlim[0]];
 | |
| 	var i, j, x, y, z;
 | |
| 	var n = grid.length;
 | |
| 	var m = grid[0].length;
 | |
| 	var wx = Math.ceil(grid.width*canvas.width/(xlim[1]-xlim[0]));
 | |
| 	var wy = Math.ceil(grid.width*canvas.height/(ylim[1]-ylim[0]));
 | |
| 	for(i=0;i<n;i++)
 | |
| 	    for(j=0;j<m;j++) {
 | |
| 		if(grid[i][j]==undefined) continue;
 | |
| 		x = canvas.width*(i*grid.width+grid.xlim[0]-xlim[0])/range[0];
 | |
| 		y = canvas.height*(1-(j*grid.width+grid.ylim[0]-ylim[0])/range[1]);
 | |
| 		z = (grid[i][j]-grid.zlim[0])/range[2];
 | |
| 		if(z<0.0) z = 0.0;
 | |
| 		if(z>1.0) z = 1.0;
 | |
| 
 | |
| 		ctx.fillStyle = colors[Math.floor((colors.length-1)*z)];
 | |
| 		ctx.fillRect(Math.round(x-wx/2), Math.round(y-wy/2), wx, wy);
 | |
| 	    }
 | |
| 
 | |
|     };
 | |
| 
 | |
| 
 | |
|     return kriging;
 | |
| }();
 | |
| // if (module && module.exports){
 | |
| //     module.exports = kriging;
 | |
| // }
 |