543 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			543 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| 
								 | 
							
								import {
							 | 
						||
| 
								 | 
							
									Vector3,
							 | 
						||
| 
								 | 
							
									Vector4
							 | 
						||
| 
								 | 
							
								} from 'three';
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * NURBS utils
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * See NURBSCurve and NURBSSurface.
							 | 
						||
| 
								 | 
							
								 **/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**************************************************************
							 | 
						||
| 
								 | 
							
								 *	NURBS Utils
							 | 
						||
| 
								 | 
							
								 **************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Finds knot vector span.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								p : degree
							 | 
						||
| 
								 | 
							
								u : parametric value
							 | 
						||
| 
								 | 
							
								U : knot vector
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								returns the span
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								function findSpan( p, u, U ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const n = U.length - p - 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if ( u >= U[ n ] ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										return n - 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if ( u <= U[ p ] ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										return p;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									let low = p;
							 | 
						||
| 
								 | 
							
									let high = n;
							 | 
						||
| 
								 | 
							
									let mid = Math.floor( ( low + high ) / 2 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										if ( u < U[ mid ] ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											high = mid;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										} else {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											low = mid;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										mid = Math.floor( ( low + high ) / 2 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return mid;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								span : span in which u lies
							 | 
						||
| 
								 | 
							
								u    : parametric point
							 | 
						||
| 
								 | 
							
								p    : degree
							 | 
						||
| 
								 | 
							
								U    : knot vector
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								returns array[p+1] with basis functions values.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								function calcBasisFunctions( span, u, p, U ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const N = [];
							 | 
						||
| 
								 | 
							
									const left = [];
							 | 
						||
| 
								 | 
							
									const right = [];
							 | 
						||
| 
								 | 
							
									N[ 0 ] = 1.0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let j = 1; j <= p; ++ j ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										left[ j ] = u - U[ span + 1 - j ];
							 | 
						||
| 
								 | 
							
										right[ j ] = U[ span + j ] - u;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										let saved = 0.0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										for ( let r = 0; r < j; ++ r ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											const rv = right[ r + 1 ];
							 | 
						||
| 
								 | 
							
											const lv = left[ j - r ];
							 | 
						||
| 
								 | 
							
											const temp = N[ r ] / ( rv + lv );
							 | 
						||
| 
								 | 
							
											N[ r ] = saved + rv * temp;
							 | 
						||
| 
								 | 
							
											saved = lv * temp;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										N[ j ] = saved;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return N;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								p : degree of B-Spline
							 | 
						||
| 
								 | 
							
								U : knot vector
							 | 
						||
| 
								 | 
							
								P : control points (x, y, z, w)
							 | 
						||
| 
								 | 
							
								u : parametric point
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								returns point for given u
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								function calcBSplinePoint( p, U, P, u ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const span = findSpan( p, u, U );
							 | 
						||
| 
								 | 
							
									const N = calcBasisFunctions( span, u, p, U );
							 | 
						||
| 
								 | 
							
									const C = new Vector4( 0, 0, 0, 0 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let j = 0; j <= p; ++ j ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										const point = P[ span - p + j ];
							 | 
						||
| 
								 | 
							
										const Nj = N[ j ];
							 | 
						||
| 
								 | 
							
										const wNj = point.w * Nj;
							 | 
						||
| 
								 | 
							
										C.x += point.x * wNj;
							 | 
						||
| 
								 | 
							
										C.y += point.y * wNj;
							 | 
						||
| 
								 | 
							
										C.z += point.z * wNj;
							 | 
						||
| 
								 | 
							
										C.w += point.w * Nj;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return C;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								span : span in which u lies
							 | 
						||
| 
								 | 
							
								u    : parametric point
							 | 
						||
| 
								 | 
							
								p    : degree
							 | 
						||
| 
								 | 
							
								n    : number of derivatives to calculate
							 | 
						||
| 
								 | 
							
								U    : knot vector
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								returns array[n+1][p+1] with basis functions derivatives
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								function calcBasisFunctionDerivatives( span, u, p, n, U ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const zeroArr = [];
							 | 
						||
| 
								 | 
							
									for ( let i = 0; i <= p; ++ i )
							 | 
						||
| 
								 | 
							
										zeroArr[ i ] = 0.0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const ders = [];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let i = 0; i <= n; ++ i )
							 | 
						||
| 
								 | 
							
										ders[ i ] = zeroArr.slice( 0 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const ndu = [];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let i = 0; i <= p; ++ i )
							 | 
						||
| 
								 | 
							
										ndu[ i ] = zeroArr.slice( 0 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									ndu[ 0 ][ 0 ] = 1.0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const left = zeroArr.slice( 0 );
							 | 
						||
| 
								 | 
							
									const right = zeroArr.slice( 0 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let j = 1; j <= p; ++ j ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										left[ j ] = u - U[ span + 1 - j ];
							 | 
						||
| 
								 | 
							
										right[ j ] = U[ span + j ] - u;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										let saved = 0.0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										for ( let r = 0; r < j; ++ r ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											const rv = right[ r + 1 ];
							 | 
						||
| 
								 | 
							
											const lv = left[ j - r ];
							 | 
						||
| 
								 | 
							
											ndu[ j ][ r ] = rv + lv;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
							 | 
						||
| 
								 | 
							
											ndu[ r ][ j ] = saved + rv * temp;
							 | 
						||
| 
								 | 
							
											saved = lv * temp;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										ndu[ j ][ j ] = saved;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let j = 0; j <= p; ++ j ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										ders[ 0 ][ j ] = ndu[ j ][ p ];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let r = 0; r <= p; ++ r ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										let s1 = 0;
							 | 
						||
| 
								 | 
							
										let s2 = 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										const a = [];
							 | 
						||
| 
								 | 
							
										for ( let i = 0; i <= p; ++ i ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											a[ i ] = zeroArr.slice( 0 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										a[ 0 ][ 0 ] = 1.0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										for ( let k = 1; k <= n; ++ k ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											let d = 0.0;
							 | 
						||
| 
								 | 
							
											const rk = r - k;
							 | 
						||
| 
								 | 
							
											const pk = p - k;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											if ( r >= k ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
							 | 
						||
| 
								 | 
							
												d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											const j1 = ( rk >= - 1 ) ? 1 : - rk;
							 | 
						||
| 
								 | 
							
											const j2 = ( r - 1 <= pk ) ? k - 1 : p - r;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											for ( let j = j1; j <= j2; ++ j ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
							 | 
						||
| 
								 | 
							
												d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											if ( r <= pk ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
							 | 
						||
| 
								 | 
							
												d += a[ s2 ][ k ] * ndu[ r ][ pk ];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											ders[ k ][ r ] = d;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											const j = s1;
							 | 
						||
| 
								 | 
							
											s1 = s2;
							 | 
						||
| 
								 | 
							
											s2 = j;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									let r = p;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let k = 1; k <= n; ++ k ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										for ( let j = 0; j <= p; ++ j ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											ders[ k ][ j ] *= r;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										r *= p - k;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return ders;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
									Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									p  : degree
							 | 
						||
| 
								 | 
							
									U  : knot vector
							 | 
						||
| 
								 | 
							
									P  : control points
							 | 
						||
| 
								 | 
							
									u  : Parametric points
							 | 
						||
| 
								 | 
							
									nd : number of derivatives
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									returns array[d+1] with derivatives
							 | 
						||
| 
								 | 
							
									*/
							 | 
						||
| 
								 | 
							
								function calcBSplineDerivatives( p, U, P, u, nd ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const du = nd < p ? nd : p;
							 | 
						||
| 
								 | 
							
									const CK = [];
							 | 
						||
| 
								 | 
							
									const span = findSpan( p, u, U );
							 | 
						||
| 
								 | 
							
									const nders = calcBasisFunctionDerivatives( span, u, p, du, U );
							 | 
						||
| 
								 | 
							
									const Pw = [];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let i = 0; i < P.length; ++ i ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										const point = P[ i ].clone();
							 | 
						||
| 
								 | 
							
										const w = point.w;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										point.x *= w;
							 | 
						||
| 
								 | 
							
										point.y *= w;
							 | 
						||
| 
								 | 
							
										point.z *= w;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										Pw[ i ] = point;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let k = 0; k <= du; ++ k ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										for ( let j = 1; j <= p; ++ j ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										CK[ k ] = point;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let k = du + 1; k <= nd + 1; ++ k ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										CK[ k ] = new Vector4( 0, 0, 0 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return CK;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Calculate "K over I"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								returns k!/(i!(k-i)!)
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								function calcKoverI( k, i ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									let nom = 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let j = 2; j <= k; ++ j ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										nom *= j;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									let denom = 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let j = 2; j <= i; ++ j ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										denom *= j;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let j = 2; j <= k - i; ++ j ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										denom *= j;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return nom / denom;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Pders : result of function calcBSplineDerivatives
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								returns array with derivatives for rational curve.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								function calcRationalCurveDerivatives( Pders ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const nd = Pders.length;
							 | 
						||
| 
								 | 
							
									const Aders = [];
							 | 
						||
| 
								 | 
							
									const wders = [];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let i = 0; i < nd; ++ i ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										const point = Pders[ i ];
							 | 
						||
| 
								 | 
							
										Aders[ i ] = new Vector3( point.x, point.y, point.z );
							 | 
						||
| 
								 | 
							
										wders[ i ] = point.w;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const CK = [];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let k = 0; k < nd; ++ k ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										const v = Aders[ k ].clone();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										for ( let i = 1; i <= k; ++ i ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										CK[ k ] = v.divideScalar( wders[ 0 ] );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return CK;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								p  : degree
							 | 
						||
| 
								 | 
							
								U  : knot vector
							 | 
						||
| 
								 | 
							
								P  : control points in homogeneous space
							 | 
						||
| 
								 | 
							
								u  : parametric points
							 | 
						||
| 
								 | 
							
								nd : number of derivatives
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								returns array with derivatives.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								function calcNURBSDerivatives( p, U, P, u, nd ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const Pders = calcBSplineDerivatives( p, U, P, u, nd );
							 | 
						||
| 
								 | 
							
									return calcRationalCurveDerivatives( Pders );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								p, q : degrees of B-Spline surface
							 | 
						||
| 
								 | 
							
								U, V : knot vectors
							 | 
						||
| 
								 | 
							
								P    : control points (x, y, z, w)
							 | 
						||
| 
								 | 
							
								u, v : parametric values
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								returns point for given (u, v)
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								function calcSurfacePoint( p, q, U, V, P, u, v, target ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const uspan = findSpan( p, u, U );
							 | 
						||
| 
								 | 
							
									const vspan = findSpan( q, v, V );
							 | 
						||
| 
								 | 
							
									const Nu = calcBasisFunctions( uspan, u, p, U );
							 | 
						||
| 
								 | 
							
									const Nv = calcBasisFunctions( vspan, v, q, V );
							 | 
						||
| 
								 | 
							
									const temp = [];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let l = 0; l <= q; ++ l ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										temp[ l ] = new Vector4( 0, 0, 0, 0 );
							 | 
						||
| 
								 | 
							
										for ( let k = 0; k <= p; ++ k ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											const point = P[ uspan - p + k ][ vspan - q + l ].clone();
							 | 
						||
| 
								 | 
							
											const w = point.w;
							 | 
						||
| 
								 | 
							
											point.x *= w;
							 | 
						||
| 
								 | 
							
											point.y *= w;
							 | 
						||
| 
								 | 
							
											point.z *= w;
							 | 
						||
| 
								 | 
							
											temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const Sw = new Vector4( 0, 0, 0, 0 );
							 | 
						||
| 
								 | 
							
									for ( let l = 0; l <= q; ++ l ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									Sw.divideScalar( Sw.w );
							 | 
						||
| 
								 | 
							
									target.set( Sw.x, Sw.y, Sw.z );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Calculate rational B-Spline volume point. See The NURBS Book, page 134, algorithm A4.3.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								p, q, r   : degrees of B-Splinevolume
							 | 
						||
| 
								 | 
							
								U, V, W   : knot vectors
							 | 
						||
| 
								 | 
							
								P         : control points (x, y, z, w)
							 | 
						||
| 
								 | 
							
								u, v, w   : parametric values
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								returns point for given (u, v, w)
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								function calcVolumePoint( p, q, r, U, V, W, P, u, v, w, target ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const uspan = findSpan( p, u, U );
							 | 
						||
| 
								 | 
							
									const vspan = findSpan( q, v, V );
							 | 
						||
| 
								 | 
							
									const wspan = findSpan( r, w, W );
							 | 
						||
| 
								 | 
							
									const Nu = calcBasisFunctions( uspan, u, p, U );
							 | 
						||
| 
								 | 
							
									const Nv = calcBasisFunctions( vspan, v, q, V );
							 | 
						||
| 
								 | 
							
									const Nw = calcBasisFunctions( wspan, w, r, W );
							 | 
						||
| 
								 | 
							
									const temp = [];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let m = 0; m <= r; ++ m ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										temp[ m ] = [];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										for ( let l = 0; l <= q; ++ l ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											temp[ m ][ l ] = new Vector4( 0, 0, 0, 0 );
							 | 
						||
| 
								 | 
							
											for ( let k = 0; k <= p; ++ k ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												const point = P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone();
							 | 
						||
| 
								 | 
							
												const w = point.w;
							 | 
						||
| 
								 | 
							
												point.x *= w;
							 | 
						||
| 
								 | 
							
												point.y *= w;
							 | 
						||
| 
								 | 
							
												point.z *= w;
							 | 
						||
| 
								 | 
							
												temp[ m ][ l ].add( point.multiplyScalar( Nu[ k ] ) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									const Sw = new Vector4( 0, 0, 0, 0 );
							 | 
						||
| 
								 | 
							
									for ( let m = 0; m <= r; ++ m ) {
							 | 
						||
| 
								 | 
							
										for ( let l = 0; l <= q; ++ l ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											Sw.add( temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar( Nv[ l ] ) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									Sw.divideScalar( Sw.w );
							 | 
						||
| 
								 | 
							
									target.set( Sw.x, Sw.y, Sw.z );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								export {
							 | 
						||
| 
								 | 
							
									findSpan,
							 | 
						||
| 
								 | 
							
									calcBasisFunctions,
							 | 
						||
| 
								 | 
							
									calcBSplinePoint,
							 | 
						||
| 
								 | 
							
									calcBasisFunctionDerivatives,
							 | 
						||
| 
								 | 
							
									calcBSplineDerivatives,
							 | 
						||
| 
								 | 
							
									calcKoverI,
							 | 
						||
| 
								 | 
							
									calcRationalCurveDerivatives,
							 | 
						||
| 
								 | 
							
									calcNURBSDerivatives,
							 | 
						||
| 
								 | 
							
									calcSurfacePoint,
							 | 
						||
| 
								 | 
							
									calcVolumePoint,
							 | 
						||
| 
								 | 
							
								};
							 |