290 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			290 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| 
								 | 
							
								import {
							 | 
						||
| 
								 | 
							
									Vector2,
							 | 
						||
| 
								 | 
							
									Vector3
							 | 
						||
| 
								 | 
							
								} from 'three';
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Shaders to render 3D volumes using raycasting.
							 | 
						||
| 
								 | 
							
								 * The applied techniques are based on similar implementations in the Visvis and Vispy projects.
							 | 
						||
| 
								 | 
							
								 * This is not the only approach, therefore it's marked 1.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								const VolumeRenderShader1 = {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									uniforms: {
							 | 
						||
| 
								 | 
							
										'u_size': { value: new Vector3( 1, 1, 1 ) },
							 | 
						||
| 
								 | 
							
										'u_renderstyle': { value: 0 },
							 | 
						||
| 
								 | 
							
										'u_renderthreshold': { value: 0.5 },
							 | 
						||
| 
								 | 
							
										'u_clim': { value: new Vector2( 1, 1 ) },
							 | 
						||
| 
								 | 
							
										'u_data': { value: null },
							 | 
						||
| 
								 | 
							
										'u_cmdata': { value: null }
							 | 
						||
| 
								 | 
							
									},
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									vertexShader: /* glsl */`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										varying vec4 v_nearpos;
							 | 
						||
| 
								 | 
							
										varying vec4 v_farpos;
							 | 
						||
| 
								 | 
							
										varying vec3 v_position;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										void main() {
							 | 
						||
| 
								 | 
							
												// Prepare transforms to map to "camera view". See also:
							 | 
						||
| 
								 | 
							
												// https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
							 | 
						||
| 
								 | 
							
												mat4 viewtransformf = modelViewMatrix;
							 | 
						||
| 
								 | 
							
												mat4 viewtransformi = inverse(modelViewMatrix);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												// Project local vertex coordinate to camera position. Then do a step
							 | 
						||
| 
								 | 
							
												// backward (in cam coords) to the near clipping plane, and project back. Do
							 | 
						||
| 
								 | 
							
												// the same for the far clipping plane. This gives us all the information we
							 | 
						||
| 
								 | 
							
												// need to calculate the ray and truncate it to the viewing cone.
							 | 
						||
| 
								 | 
							
												vec4 position4 = vec4(position, 1.0);
							 | 
						||
| 
								 | 
							
												vec4 pos_in_cam = viewtransformf * position4;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												// Intersection of ray and near clipping plane (z = -1 in clip coords)
							 | 
						||
| 
								 | 
							
												pos_in_cam.z = -pos_in_cam.w;
							 | 
						||
| 
								 | 
							
												v_nearpos = viewtransformi * pos_in_cam;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												// Intersection of ray and far clipping plane (z = +1 in clip coords)
							 | 
						||
| 
								 | 
							
												pos_in_cam.z = pos_in_cam.w;
							 | 
						||
| 
								 | 
							
												v_farpos = viewtransformi * pos_in_cam;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												// Set varyings and output pos
							 | 
						||
| 
								 | 
							
												v_position = position;
							 | 
						||
| 
								 | 
							
												gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;
							 | 
						||
| 
								 | 
							
										}`,
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									fragmentShader: /* glsl */`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												precision highp float;
							 | 
						||
| 
								 | 
							
												precision mediump sampler3D;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												uniform vec3 u_size;
							 | 
						||
| 
								 | 
							
												uniform int u_renderstyle;
							 | 
						||
| 
								 | 
							
												uniform float u_renderthreshold;
							 | 
						||
| 
								 | 
							
												uniform vec2 u_clim;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												uniform sampler3D u_data;
							 | 
						||
| 
								 | 
							
												uniform sampler2D u_cmdata;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												varying vec3 v_position;
							 | 
						||
| 
								 | 
							
												varying vec4 v_nearpos;
							 | 
						||
| 
								 | 
							
												varying vec4 v_farpos;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												// The maximum distance through our rendering volume is sqrt(3).
							 | 
						||
| 
								 | 
							
												const int MAX_STEPS = 887;	// 887 for 512^3, 1774 for 1024^3
							 | 
						||
| 
								 | 
							
												const int REFINEMENT_STEPS = 4;
							 | 
						||
| 
								 | 
							
												const float relative_step_size = 1.0;
							 | 
						||
| 
								 | 
							
												const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);
							 | 
						||
| 
								 | 
							
												const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);
							 | 
						||
| 
								 | 
							
												const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);
							 | 
						||
| 
								 | 
							
												const float shininess = 40.0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
							 | 
						||
| 
								 | 
							
												void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												float sample1(vec3 texcoords);
							 | 
						||
| 
								 | 
							
												vec4 apply_colormap(float val);
							 | 
						||
| 
								 | 
							
												vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												void main() {
							 | 
						||
| 
								 | 
							
														// Normalize clipping plane info
							 | 
						||
| 
								 | 
							
														vec3 farpos = v_farpos.xyz / v_farpos.w;
							 | 
						||
| 
								 | 
							
														vec3 nearpos = v_nearpos.xyz / v_nearpos.w;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Calculate unit vector pointing in the view direction through this fragment.
							 | 
						||
| 
								 | 
							
														vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Compute the (negative) distance to the front surface or near clipping plane.
							 | 
						||
| 
								 | 
							
														// v_position is the back face of the cuboid, so the initial distance calculated in the dot
							 | 
						||
| 
								 | 
							
														// product below is the distance from near clip plane to the back of the cuboid
							 | 
						||
| 
								 | 
							
														float distance = dot(nearpos - v_position, view_ray);
							 | 
						||
| 
								 | 
							
														distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,
							 | 
						||
| 
								 | 
							
																												(u_size.x - 0.5 - v_position.x) / view_ray.x));
							 | 
						||
| 
								 | 
							
														distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,
							 | 
						||
| 
								 | 
							
																												(u_size.y - 0.5 - v_position.y) / view_ray.y));
							 | 
						||
| 
								 | 
							
														distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,
							 | 
						||
| 
								 | 
							
																												(u_size.z - 0.5 - v_position.z) / view_ray.z));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Now we have the starting position on the front surface
							 | 
						||
| 
								 | 
							
														vec3 front = v_position + view_ray * distance;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Decide how many steps to take
							 | 
						||
| 
								 | 
							
														int nsteps = int(-distance / relative_step_size + 0.5);
							 | 
						||
| 
								 | 
							
														if ( nsteps < 1 )
							 | 
						||
| 
								 | 
							
																discard;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Get starting location and step vector in texture coordinates
							 | 
						||
| 
								 | 
							
														vec3 step = ((v_position - front) / u_size) / float(nsteps);
							 | 
						||
| 
								 | 
							
														vec3 start_loc = front / u_size;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// For testing: show the number of steps. This helps to establish
							 | 
						||
| 
								 | 
							
														// whether the rays are correctly oriented
							 | 
						||
| 
								 | 
							
														//'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);
							 | 
						||
| 
								 | 
							
														//'return;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														if (u_renderstyle == 0)
							 | 
						||
| 
								 | 
							
																cast_mip(start_loc, step, nsteps, view_ray);
							 | 
						||
| 
								 | 
							
														else if (u_renderstyle == 1)
							 | 
						||
| 
								 | 
							
																cast_iso(start_loc, step, nsteps, view_ray);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														if (gl_FragColor.a < 0.05)
							 | 
						||
| 
								 | 
							
																discard;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												float sample1(vec3 texcoords) {
							 | 
						||
| 
								 | 
							
														/* Sample float value from a 3D texture. Assumes intensity data. */
							 | 
						||
| 
								 | 
							
														return texture(u_data, texcoords.xyz).r;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												vec4 apply_colormap(float val) {
							 | 
						||
| 
								 | 
							
														val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);
							 | 
						||
| 
								 | 
							
														return texture2D(u_cmdata, vec2(val, 0.5));
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														float max_val = -1e6;
							 | 
						||
| 
								 | 
							
														int max_i = 100;
							 | 
						||
| 
								 | 
							
														vec3 loc = start_loc;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
							 | 
						||
| 
								 | 
							
														// non-constant expression. So we use a hard-coded max, and an additional condition
							 | 
						||
| 
								 | 
							
														// inside the loop.
							 | 
						||
| 
								 | 
							
														for (int iter=0; iter<MAX_STEPS; iter++) {
							 | 
						||
| 
								 | 
							
																if (iter >= nsteps)
							 | 
						||
| 
								 | 
							
																		break;
							 | 
						||
| 
								 | 
							
																// Sample from the 3D texture
							 | 
						||
| 
								 | 
							
																float val = sample1(loc);
							 | 
						||
| 
								 | 
							
																// Apply MIP operation
							 | 
						||
| 
								 | 
							
																if (val > max_val) {
							 | 
						||
| 
								 | 
							
																		max_val = val;
							 | 
						||
| 
								 | 
							
																		max_i = iter;
							 | 
						||
| 
								 | 
							
																}
							 | 
						||
| 
								 | 
							
																// Advance location deeper into the volume
							 | 
						||
| 
								 | 
							
																loc += step;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Refine location, gives crispier images
							 | 
						||
| 
								 | 
							
														vec3 iloc = start_loc + step * (float(max_i) - 0.5);
							 | 
						||
| 
								 | 
							
														vec3 istep = step / float(REFINEMENT_STEPS);
							 | 
						||
| 
								 | 
							
														for (int i=0; i<REFINEMENT_STEPS; i++) {
							 | 
						||
| 
								 | 
							
																max_val = max(max_val, sample1(iloc));
							 | 
						||
| 
								 | 
							
																iloc += istep;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Resolve final color
							 | 
						||
| 
								 | 
							
														gl_FragColor = apply_colormap(max_val);
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														gl_FragColor = vec4(0.0);	// init transparent
							 | 
						||
| 
								 | 
							
														vec4 color3 = vec4(0.0);	// final color
							 | 
						||
| 
								 | 
							
														vec3 dstep = 1.5 / u_size;	// step to sample derivative
							 | 
						||
| 
								 | 
							
														vec3 loc = start_loc;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
							 | 
						||
| 
								 | 
							
														// non-constant expression. So we use a hard-coded max, and an additional condition
							 | 
						||
| 
								 | 
							
														// inside the loop.
							 | 
						||
| 
								 | 
							
														for (int iter=0; iter<MAX_STEPS; iter++) {
							 | 
						||
| 
								 | 
							
																if (iter >= nsteps)
							 | 
						||
| 
								 | 
							
																		break;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
																// Sample from the 3D texture
							 | 
						||
| 
								 | 
							
																float val = sample1(loc);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
																if (val > low_threshold) {
							 | 
						||
| 
								 | 
							
																		// Take the last interval in smaller steps
							 | 
						||
| 
								 | 
							
																		vec3 iloc = loc - 0.5 * step;
							 | 
						||
| 
								 | 
							
																		vec3 istep = step / float(REFINEMENT_STEPS);
							 | 
						||
| 
								 | 
							
																		for (int i=0; i<REFINEMENT_STEPS; i++) {
							 | 
						||
| 
								 | 
							
																				val = sample1(iloc);
							 | 
						||
| 
								 | 
							
																				if (val > u_renderthreshold) {
							 | 
						||
| 
								 | 
							
																						gl_FragColor = add_lighting(val, iloc, dstep, view_ray);
							 | 
						||
| 
								 | 
							
																						return;
							 | 
						||
| 
								 | 
							
																				}
							 | 
						||
| 
								 | 
							
																				iloc += istep;
							 | 
						||
| 
								 | 
							
																		}
							 | 
						||
| 
								 | 
							
																}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
																// Advance location deeper into the volume
							 | 
						||
| 
								 | 
							
																loc += step;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													// Calculate color by incorporating lighting
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// View direction
							 | 
						||
| 
								 | 
							
														vec3 V = normalize(view_ray);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// calculate normal vector from gradient
							 | 
						||
| 
								 | 
							
														vec3 N;
							 | 
						||
| 
								 | 
							
														float val1, val2;
							 | 
						||
| 
								 | 
							
														val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));
							 | 
						||
| 
								 | 
							
														val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));
							 | 
						||
| 
								 | 
							
														N[0] = val1 - val2;
							 | 
						||
| 
								 | 
							
														val = max(max(val1, val2), val);
							 | 
						||
| 
								 | 
							
														val1 = sample1(loc + vec3(0.0, -step[1], 0.0));
							 | 
						||
| 
								 | 
							
														val2 = sample1(loc + vec3(0.0, +step[1], 0.0));
							 | 
						||
| 
								 | 
							
														N[1] = val1 - val2;
							 | 
						||
| 
								 | 
							
														val = max(max(val1, val2), val);
							 | 
						||
| 
								 | 
							
														val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));
							 | 
						||
| 
								 | 
							
														val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));
							 | 
						||
| 
								 | 
							
														N[2] = val1 - val2;
							 | 
						||
| 
								 | 
							
														val = max(max(val1, val2), val);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														float gm = length(N); // gradient magnitude
							 | 
						||
| 
								 | 
							
														N = normalize(N);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Flip normal so it points towards viewer
							 | 
						||
| 
								 | 
							
														float Nselect = float(dot(N, V) > 0.0);
							 | 
						||
| 
								 | 
							
														N = (2.0 * Nselect - 1.0) * N;	// ==	Nselect * N - (1.0-Nselect)*N;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Init colors
							 | 
						||
| 
								 | 
							
														vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);
							 | 
						||
| 
								 | 
							
														vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);
							 | 
						||
| 
								 | 
							
														vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// note: could allow multiple lights
							 | 
						||
| 
								 | 
							
														for (int i=0; i<1; i++)
							 | 
						||
| 
								 | 
							
														{
							 | 
						||
| 
								 | 
							
																 // Get light direction (make sure to prevent zero devision)
							 | 
						||
| 
								 | 
							
																vec3 L = normalize(view_ray);	//lightDirs[i];
							 | 
						||
| 
								 | 
							
																float lightEnabled = float( length(L) > 0.0 );
							 | 
						||
| 
								 | 
							
																L = normalize(L + (1.0 - lightEnabled));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
																// Calculate lighting properties
							 | 
						||
| 
								 | 
							
																float lambertTerm = clamp(dot(N, L), 0.0, 1.0);
							 | 
						||
| 
								 | 
							
																vec3 H = normalize(L+V); // Halfway vector
							 | 
						||
| 
								 | 
							
																float specularTerm = pow(max(dot(H, N), 0.0), shininess);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
																// Calculate mask
							 | 
						||
| 
								 | 
							
																float mask1 = lightEnabled;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
																// Calculate colors
							 | 
						||
| 
								 | 
							
																ambient_color +=	mask1 * ambient_color;	// * gl_LightSource[i].ambient;
							 | 
						||
| 
								 | 
							
																diffuse_color +=	mask1 * lambertTerm;
							 | 
						||
| 
								 | 
							
																specular_color += mask1 * specularTerm * specular_color;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
														// Calculate final color by componing different components
							 | 
						||
| 
								 | 
							
														vec4 final_color;
							 | 
						||
| 
								 | 
							
														vec4 color = apply_colormap(val);
							 | 
						||
| 
								 | 
							
														final_color = color * (ambient_color + diffuse_color) + specular_color;
							 | 
						||
| 
								 | 
							
														final_color.a = color.a;
							 | 
						||
| 
								 | 
							
														return final_color;
							 | 
						||
| 
								 | 
							
												}`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								export { VolumeRenderShader1 };
							 |