220 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			220 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| 
								 | 
							
								import {
							 | 
						||
| 
								 | 
							
									BackSide,
							 | 
						||
| 
								 | 
							
									BoxGeometry,
							 | 
						||
| 
								 | 
							
									Mesh,
							 | 
						||
| 
								 | 
							
									ShaderMaterial,
							 | 
						||
| 
								 | 
							
									UniformsUtils,
							 | 
						||
| 
								 | 
							
									Vector3
							 | 
						||
| 
								 | 
							
								} from 'three';
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Based on "A Practical Analytic Model for Daylight"
							 | 
						||
| 
								 | 
							
								 * aka The Preetham Model, the de facto standard analytic skydome model
							 | 
						||
| 
								 | 
							
								 * https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * First implemented by Simon Wallner
							 | 
						||
| 
								 | 
							
								 * http://simonwallner.at/project/atmospheric-scattering/
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Improved by Martin Upitis
							 | 
						||
| 
								 | 
							
								 * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Three.js integration by zz85 http://twitter.com/blurspline
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class Sky extends Mesh {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									constructor() {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										const shader = Sky.SkyShader;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										const material = new ShaderMaterial( {
							 | 
						||
| 
								 | 
							
											name: shader.name,
							 | 
						||
| 
								 | 
							
											uniforms: UniformsUtils.clone( shader.uniforms ),
							 | 
						||
| 
								 | 
							
											vertexShader: shader.vertexShader,
							 | 
						||
| 
								 | 
							
											fragmentShader: shader.fragmentShader,
							 | 
						||
| 
								 | 
							
											side: BackSide,
							 | 
						||
| 
								 | 
							
											depthWrite: false
							 | 
						||
| 
								 | 
							
										} );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										super( new BoxGeometry( 1, 1, 1 ), material );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										this.isSky = true;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Sky.SkyShader = {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									name: 'SkyShader',
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									uniforms: {
							 | 
						||
| 
								 | 
							
										'turbidity': { value: 2 },
							 | 
						||
| 
								 | 
							
										'rayleigh': { value: 1 },
							 | 
						||
| 
								 | 
							
										'mieCoefficient': { value: 0.005 },
							 | 
						||
| 
								 | 
							
										'mieDirectionalG': { value: 0.8 },
							 | 
						||
| 
								 | 
							
										'sunPosition': { value: new Vector3() },
							 | 
						||
| 
								 | 
							
										'up': { value: new Vector3( 0, 1, 0 ) }
							 | 
						||
| 
								 | 
							
									},
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									vertexShader: /* glsl */`
							 | 
						||
| 
								 | 
							
										uniform vec3 sunPosition;
							 | 
						||
| 
								 | 
							
										uniform float rayleigh;
							 | 
						||
| 
								 | 
							
										uniform float turbidity;
							 | 
						||
| 
								 | 
							
										uniform float mieCoefficient;
							 | 
						||
| 
								 | 
							
										uniform vec3 up;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										varying vec3 vWorldPosition;
							 | 
						||
| 
								 | 
							
										varying vec3 vSunDirection;
							 | 
						||
| 
								 | 
							
										varying float vSunfade;
							 | 
						||
| 
								 | 
							
										varying vec3 vBetaR;
							 | 
						||
| 
								 | 
							
										varying vec3 vBetaM;
							 | 
						||
| 
								 | 
							
										varying float vSunE;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// constants for atmospheric scattering
							 | 
						||
| 
								 | 
							
										const float e = 2.71828182845904523536028747135266249775724709369995957;
							 | 
						||
| 
								 | 
							
										const float pi = 3.141592653589793238462643383279502884197169;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// wavelength of used primaries, according to preetham
							 | 
						||
| 
								 | 
							
										const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );
							 | 
						||
| 
								 | 
							
										// this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
							 | 
						||
| 
								 | 
							
										// (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
							 | 
						||
| 
								 | 
							
										const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// mie stuff
							 | 
						||
| 
								 | 
							
										// K coefficient for the primaries
							 | 
						||
| 
								 | 
							
										const float v = 4.0;
							 | 
						||
| 
								 | 
							
										const vec3 K = vec3( 0.686, 0.678, 0.666 );
							 | 
						||
| 
								 | 
							
										// MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
							 | 
						||
| 
								 | 
							
										const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// earth shadow hack
							 | 
						||
| 
								 | 
							
										// cutoffAngle = pi / 1.95;
							 | 
						||
| 
								 | 
							
										const float cutoffAngle = 1.6110731556870734;
							 | 
						||
| 
								 | 
							
										const float steepness = 1.5;
							 | 
						||
| 
								 | 
							
										const float EE = 1000.0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										float sunIntensity( float zenithAngleCos ) {
							 | 
						||
| 
								 | 
							
											zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );
							 | 
						||
| 
								 | 
							
											return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										vec3 totalMie( float T ) {
							 | 
						||
| 
								 | 
							
											float c = ( 0.2 * T ) * 10E-18;
							 | 
						||
| 
								 | 
							
											return 0.434 * c * MieConst;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										void main() {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
							 | 
						||
| 
								 | 
							
											vWorldPosition = worldPosition.xyz;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
							 | 
						||
| 
								 | 
							
											gl_Position.z = gl_Position.w; // set z to camera.far
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											vSunDirection = normalize( sunPosition );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											vSunE = sunIntensity( dot( vSunDirection, up ) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											// extinction (absorbtion + out scattering)
							 | 
						||
| 
								 | 
							
											// rayleigh coefficients
							 | 
						||
| 
								 | 
							
											vBetaR = totalRayleigh * rayleighCoefficient;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											// mie coefficients
							 | 
						||
| 
								 | 
							
											vBetaM = totalMie( turbidity ) * mieCoefficient;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}`,
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									fragmentShader: /* glsl */`
							 | 
						||
| 
								 | 
							
										varying vec3 vWorldPosition;
							 | 
						||
| 
								 | 
							
										varying vec3 vSunDirection;
							 | 
						||
| 
								 | 
							
										varying float vSunfade;
							 | 
						||
| 
								 | 
							
										varying vec3 vBetaR;
							 | 
						||
| 
								 | 
							
										varying vec3 vBetaM;
							 | 
						||
| 
								 | 
							
										varying float vSunE;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										uniform float mieDirectionalG;
							 | 
						||
| 
								 | 
							
										uniform vec3 up;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// constants for atmospheric scattering
							 | 
						||
| 
								 | 
							
										const float pi = 3.141592653589793238462643383279502884197169;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										const float n = 1.0003; // refractive index of air
							 | 
						||
| 
								 | 
							
										const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// optical length at zenith for molecules
							 | 
						||
| 
								 | 
							
										const float rayleighZenithLength = 8.4E3;
							 | 
						||
| 
								 | 
							
										const float mieZenithLength = 1.25E3;
							 | 
						||
| 
								 | 
							
										// 66 arc seconds -> degrees, and the cosine of that
							 | 
						||
| 
								 | 
							
										const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// 3.0 / ( 16.0 * pi )
							 | 
						||
| 
								 | 
							
										const float THREE_OVER_SIXTEENPI = 0.05968310365946075;
							 | 
						||
| 
								 | 
							
										// 1.0 / ( 4.0 * pi )
							 | 
						||
| 
								 | 
							
										const float ONE_OVER_FOURPI = 0.07957747154594767;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										float rayleighPhase( float cosTheta ) {
							 | 
						||
| 
								 | 
							
											return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										float hgPhase( float cosTheta, float g ) {
							 | 
						||
| 
								 | 
							
											float g2 = pow( g, 2.0 );
							 | 
						||
| 
								 | 
							
											float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );
							 | 
						||
| 
								 | 
							
											return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										void main() {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											vec3 direction = normalize( vWorldPosition - cameraPosition );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											// optical length
							 | 
						||
| 
								 | 
							
											// cutoff angle at 90 to avoid singularity in next formula.
							 | 
						||
| 
								 | 
							
											float zenithAngle = acos( max( 0.0, dot( up, direction ) ) );
							 | 
						||
| 
								 | 
							
											float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );
							 | 
						||
| 
								 | 
							
											float sR = rayleighZenithLength * inverse;
							 | 
						||
| 
								 | 
							
											float sM = mieZenithLength * inverse;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											// combined extinction factor
							 | 
						||
| 
								 | 
							
											vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											// in scattering
							 | 
						||
| 
								 | 
							
											float cosTheta = dot( direction, vSunDirection );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );
							 | 
						||
| 
								 | 
							
											vec3 betaRTheta = vBetaR * rPhase;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											float mPhase = hgPhase( cosTheta, mieDirectionalG );
							 | 
						||
| 
								 | 
							
											vec3 betaMTheta = vBetaM * mPhase;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );
							 | 
						||
| 
								 | 
							
											Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											// nightsky
							 | 
						||
| 
								 | 
							
											float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]
							 | 
						||
| 
								 | 
							
											float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]
							 | 
						||
| 
								 | 
							
											vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );
							 | 
						||
| 
								 | 
							
											vec3 L0 = vec3( 0.1 ) * Fex;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											// composition + solar disc
							 | 
						||
| 
								 | 
							
											float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );
							 | 
						||
| 
								 | 
							
											L0 += ( vSunE * 19000.0 * Fex ) * sundisk;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											vec3 retColor = pow( texColor, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											gl_FragColor = vec4( retColor, 1.0 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											#include <tonemapping_fragment>
							 | 
						||
| 
								 | 
							
											#include <colorspace_fragment>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								export { Sky };
							 |