543 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			543 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
|  | import { | ||
|  | 	Vector3, | ||
|  | 	Vector4 | ||
|  | } from 'three'; | ||
|  | 
 | ||
|  | /** | ||
|  |  * NURBS utils | ||
|  |  * | ||
|  |  * See NURBSCurve and NURBSSurface. | ||
|  |  **/ | ||
|  | 
 | ||
|  | 
 | ||
|  | /************************************************************** | ||
|  |  *	NURBS Utils | ||
|  |  **************************************************************/ | ||
|  | 
 | ||
|  | /* | ||
|  | Finds knot vector span. | ||
|  | 
 | ||
|  | p : degree | ||
|  | u : parametric value | ||
|  | U : knot vector | ||
|  | 
 | ||
|  | returns the span | ||
|  | */ | ||
|  | function findSpan( p, u, U ) { | ||
|  | 
 | ||
|  | 	const n = U.length - p - 1; | ||
|  | 
 | ||
|  | 	if ( u >= U[ n ] ) { | ||
|  | 
 | ||
|  | 		return n - 1; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if ( u <= U[ p ] ) { | ||
|  | 
 | ||
|  | 		return p; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	let low = p; | ||
|  | 	let high = n; | ||
|  | 	let mid = Math.floor( ( low + high ) / 2 ); | ||
|  | 
 | ||
|  | 	while ( u < U[ mid ] || u >= U[ mid + 1 ] ) { | ||
|  | 
 | ||
|  | 		if ( u < U[ mid ] ) { | ||
|  | 
 | ||
|  | 			high = mid; | ||
|  | 
 | ||
|  | 		} else { | ||
|  | 
 | ||
|  | 			low = mid; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		mid = Math.floor( ( low + high ) / 2 ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return mid; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* | ||
|  | Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2 | ||
|  | 
 | ||
|  | span : span in which u lies | ||
|  | u    : parametric point | ||
|  | p    : degree | ||
|  | U    : knot vector | ||
|  | 
 | ||
|  | returns array[p+1] with basis functions values. | ||
|  | */ | ||
|  | function calcBasisFunctions( span, u, p, U ) { | ||
|  | 
 | ||
|  | 	const N = []; | ||
|  | 	const left = []; | ||
|  | 	const right = []; | ||
|  | 	N[ 0 ] = 1.0; | ||
|  | 
 | ||
|  | 	for ( let j = 1; j <= p; ++ j ) { | ||
|  | 
 | ||
|  | 		left[ j ] = u - U[ span + 1 - j ]; | ||
|  | 		right[ j ] = U[ span + j ] - u; | ||
|  | 
 | ||
|  | 		let saved = 0.0; | ||
|  | 
 | ||
|  | 		for ( let r = 0; r < j; ++ r ) { | ||
|  | 
 | ||
|  | 			const rv = right[ r + 1 ]; | ||
|  | 			const lv = left[ j - r ]; | ||
|  | 			const temp = N[ r ] / ( rv + lv ); | ||
|  | 			N[ r ] = saved + rv * temp; | ||
|  | 			saved = lv * temp; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		N[ j ] = saved; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return N; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* | ||
|  | Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1. | ||
|  | 
 | ||
|  | p : degree of B-Spline | ||
|  | U : knot vector | ||
|  | P : control points (x, y, z, w) | ||
|  | u : parametric point | ||
|  | 
 | ||
|  | returns point for given u | ||
|  | */ | ||
|  | function calcBSplinePoint( p, U, P, u ) { | ||
|  | 
 | ||
|  | 	const span = findSpan( p, u, U ); | ||
|  | 	const N = calcBasisFunctions( span, u, p, U ); | ||
|  | 	const C = new Vector4( 0, 0, 0, 0 ); | ||
|  | 
 | ||
|  | 	for ( let j = 0; j <= p; ++ j ) { | ||
|  | 
 | ||
|  | 		const point = P[ span - p + j ]; | ||
|  | 		const Nj = N[ j ]; | ||
|  | 		const wNj = point.w * Nj; | ||
|  | 		C.x += point.x * wNj; | ||
|  | 		C.y += point.y * wNj; | ||
|  | 		C.z += point.z * wNj; | ||
|  | 		C.w += point.w * Nj; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return C; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* | ||
|  | Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3. | ||
|  | 
 | ||
|  | span : span in which u lies | ||
|  | u    : parametric point | ||
|  | p    : degree | ||
|  | n    : number of derivatives to calculate | ||
|  | U    : knot vector | ||
|  | 
 | ||
|  | returns array[n+1][p+1] with basis functions derivatives | ||
|  | */ | ||
|  | function calcBasisFunctionDerivatives( span, u, p, n, U ) { | ||
|  | 
 | ||
|  | 	const zeroArr = []; | ||
|  | 	for ( let i = 0; i <= p; ++ i ) | ||
|  | 		zeroArr[ i ] = 0.0; | ||
|  | 
 | ||
|  | 	const ders = []; | ||
|  | 
 | ||
|  | 	for ( let i = 0; i <= n; ++ i ) | ||
|  | 		ders[ i ] = zeroArr.slice( 0 ); | ||
|  | 
 | ||
|  | 	const ndu = []; | ||
|  | 
 | ||
|  | 	for ( let i = 0; i <= p; ++ i ) | ||
|  | 		ndu[ i ] = zeroArr.slice( 0 ); | ||
|  | 
 | ||
|  | 	ndu[ 0 ][ 0 ] = 1.0; | ||
|  | 
 | ||
|  | 	const left = zeroArr.slice( 0 ); | ||
|  | 	const right = zeroArr.slice( 0 ); | ||
|  | 
 | ||
|  | 	for ( let j = 1; j <= p; ++ j ) { | ||
|  | 
 | ||
|  | 		left[ j ] = u - U[ span + 1 - j ]; | ||
|  | 		right[ j ] = U[ span + j ] - u; | ||
|  | 
 | ||
|  | 		let saved = 0.0; | ||
|  | 
 | ||
|  | 		for ( let r = 0; r < j; ++ r ) { | ||
|  | 
 | ||
|  | 			const rv = right[ r + 1 ]; | ||
|  | 			const lv = left[ j - r ]; | ||
|  | 			ndu[ j ][ r ] = rv + lv; | ||
|  | 
 | ||
|  | 			const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ]; | ||
|  | 			ndu[ r ][ j ] = saved + rv * temp; | ||
|  | 			saved = lv * temp; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		ndu[ j ][ j ] = saved; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for ( let j = 0; j <= p; ++ j ) { | ||
|  | 
 | ||
|  | 		ders[ 0 ][ j ] = ndu[ j ][ p ]; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for ( let r = 0; r <= p; ++ r ) { | ||
|  | 
 | ||
|  | 		let s1 = 0; | ||
|  | 		let s2 = 1; | ||
|  | 
 | ||
|  | 		const a = []; | ||
|  | 		for ( let i = 0; i <= p; ++ i ) { | ||
|  | 
 | ||
|  | 			a[ i ] = zeroArr.slice( 0 ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		a[ 0 ][ 0 ] = 1.0; | ||
|  | 
 | ||
|  | 		for ( let k = 1; k <= n; ++ k ) { | ||
|  | 
 | ||
|  | 			let d = 0.0; | ||
|  | 			const rk = r - k; | ||
|  | 			const pk = p - k; | ||
|  | 
 | ||
|  | 			if ( r >= k ) { | ||
|  | 
 | ||
|  | 				a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ]; | ||
|  | 				d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ]; | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 			const j1 = ( rk >= - 1 ) ? 1 : - rk; | ||
|  | 			const j2 = ( r - 1 <= pk ) ? k - 1 : p - r; | ||
|  | 
 | ||
|  | 			for ( let j = j1; j <= j2; ++ j ) { | ||
|  | 
 | ||
|  | 				a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ]; | ||
|  | 				d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ]; | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 			if ( r <= pk ) { | ||
|  | 
 | ||
|  | 				a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ]; | ||
|  | 				d += a[ s2 ][ k ] * ndu[ r ][ pk ]; | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 			ders[ k ][ r ] = d; | ||
|  | 
 | ||
|  | 			const j = s1; | ||
|  | 			s1 = s2; | ||
|  | 			s2 = j; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	let r = p; | ||
|  | 
 | ||
|  | 	for ( let k = 1; k <= n; ++ k ) { | ||
|  | 
 | ||
|  | 		for ( let j = 0; j <= p; ++ j ) { | ||
|  | 
 | ||
|  | 			ders[ k ][ j ] *= r; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		r *= p - k; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return ders; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* | ||
|  | 	Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2. | ||
|  | 
 | ||
|  | 	p  : degree | ||
|  | 	U  : knot vector | ||
|  | 	P  : control points | ||
|  | 	u  : Parametric points | ||
|  | 	nd : number of derivatives | ||
|  | 
 | ||
|  | 	returns array[d+1] with derivatives | ||
|  | 	*/ | ||
|  | function calcBSplineDerivatives( p, U, P, u, nd ) { | ||
|  | 
 | ||
|  | 	const du = nd < p ? nd : p; | ||
|  | 	const CK = []; | ||
|  | 	const span = findSpan( p, u, U ); | ||
|  | 	const nders = calcBasisFunctionDerivatives( span, u, p, du, U ); | ||
|  | 	const Pw = []; | ||
|  | 
 | ||
|  | 	for ( let i = 0; i < P.length; ++ i ) { | ||
|  | 
 | ||
|  | 		const point = P[ i ].clone(); | ||
|  | 		const w = point.w; | ||
|  | 
 | ||
|  | 		point.x *= w; | ||
|  | 		point.y *= w; | ||
|  | 		point.z *= w; | ||
|  | 
 | ||
|  | 		Pw[ i ] = point; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for ( let k = 0; k <= du; ++ k ) { | ||
|  | 
 | ||
|  | 		const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] ); | ||
|  | 
 | ||
|  | 		for ( let j = 1; j <= p; ++ j ) { | ||
|  | 
 | ||
|  | 			point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		CK[ k ] = point; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for ( let k = du + 1; k <= nd + 1; ++ k ) { | ||
|  | 
 | ||
|  | 		CK[ k ] = new Vector4( 0, 0, 0 ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return CK; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* | ||
|  | Calculate "K over I" | ||
|  | 
 | ||
|  | returns k!/(i!(k-i)!) | ||
|  | */ | ||
|  | function calcKoverI( k, i ) { | ||
|  | 
 | ||
|  | 	let nom = 1; | ||
|  | 
 | ||
|  | 	for ( let j = 2; j <= k; ++ j ) { | ||
|  | 
 | ||
|  | 		nom *= j; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	let denom = 1; | ||
|  | 
 | ||
|  | 	for ( let j = 2; j <= i; ++ j ) { | ||
|  | 
 | ||
|  | 		denom *= j; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for ( let j = 2; j <= k - i; ++ j ) { | ||
|  | 
 | ||
|  | 		denom *= j; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return nom / denom; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* | ||
|  | Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2. | ||
|  | 
 | ||
|  | Pders : result of function calcBSplineDerivatives | ||
|  | 
 | ||
|  | returns array with derivatives for rational curve. | ||
|  | */ | ||
|  | function calcRationalCurveDerivatives( Pders ) { | ||
|  | 
 | ||
|  | 	const nd = Pders.length; | ||
|  | 	const Aders = []; | ||
|  | 	const wders = []; | ||
|  | 
 | ||
|  | 	for ( let i = 0; i < nd; ++ i ) { | ||
|  | 
 | ||
|  | 		const point = Pders[ i ]; | ||
|  | 		Aders[ i ] = new Vector3( point.x, point.y, point.z ); | ||
|  | 		wders[ i ] = point.w; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const CK = []; | ||
|  | 
 | ||
|  | 	for ( let k = 0; k < nd; ++ k ) { | ||
|  | 
 | ||
|  | 		const v = Aders[ k ].clone(); | ||
|  | 
 | ||
|  | 		for ( let i = 1; i <= k; ++ i ) { | ||
|  | 
 | ||
|  | 			v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		CK[ k ] = v.divideScalar( wders[ 0 ] ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return CK; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* | ||
|  | Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2. | ||
|  | 
 | ||
|  | p  : degree | ||
|  | U  : knot vector | ||
|  | P  : control points in homogeneous space | ||
|  | u  : parametric points | ||
|  | nd : number of derivatives | ||
|  | 
 | ||
|  | returns array with derivatives. | ||
|  | */ | ||
|  | function calcNURBSDerivatives( p, U, P, u, nd ) { | ||
|  | 
 | ||
|  | 	const Pders = calcBSplineDerivatives( p, U, P, u, nd ); | ||
|  | 	return calcRationalCurveDerivatives( Pders ); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* | ||
|  | Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3. | ||
|  | 
 | ||
|  | p, q : degrees of B-Spline surface | ||
|  | U, V : knot vectors | ||
|  | P    : control points (x, y, z, w) | ||
|  | u, v : parametric values | ||
|  | 
 | ||
|  | returns point for given (u, v) | ||
|  | */ | ||
|  | function calcSurfacePoint( p, q, U, V, P, u, v, target ) { | ||
|  | 
 | ||
|  | 	const uspan = findSpan( p, u, U ); | ||
|  | 	const vspan = findSpan( q, v, V ); | ||
|  | 	const Nu = calcBasisFunctions( uspan, u, p, U ); | ||
|  | 	const Nv = calcBasisFunctions( vspan, v, q, V ); | ||
|  | 	const temp = []; | ||
|  | 
 | ||
|  | 	for ( let l = 0; l <= q; ++ l ) { | ||
|  | 
 | ||
|  | 		temp[ l ] = new Vector4( 0, 0, 0, 0 ); | ||
|  | 		for ( let k = 0; k <= p; ++ k ) { | ||
|  | 
 | ||
|  | 			const point = P[ uspan - p + k ][ vspan - q + l ].clone(); | ||
|  | 			const w = point.w; | ||
|  | 			point.x *= w; | ||
|  | 			point.y *= w; | ||
|  | 			point.z *= w; | ||
|  | 			temp[ l ].add( point.multiplyScalar( Nu[ k ] ) ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const Sw = new Vector4( 0, 0, 0, 0 ); | ||
|  | 	for ( let l = 0; l <= q; ++ l ) { | ||
|  | 
 | ||
|  | 		Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	Sw.divideScalar( Sw.w ); | ||
|  | 	target.set( Sw.x, Sw.y, Sw.z ); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | /* | ||
|  | Calculate rational B-Spline volume point. See The NURBS Book, page 134, algorithm A4.3. | ||
|  | 
 | ||
|  | p, q, r   : degrees of B-Splinevolume | ||
|  | U, V, W   : knot vectors | ||
|  | P         : control points (x, y, z, w) | ||
|  | u, v, w   : parametric values | ||
|  | 
 | ||
|  | returns point for given (u, v, w) | ||
|  | */ | ||
|  | function calcVolumePoint( p, q, r, U, V, W, P, u, v, w, target ) { | ||
|  | 
 | ||
|  | 	const uspan = findSpan( p, u, U ); | ||
|  | 	const vspan = findSpan( q, v, V ); | ||
|  | 	const wspan = findSpan( r, w, W ); | ||
|  | 	const Nu = calcBasisFunctions( uspan, u, p, U ); | ||
|  | 	const Nv = calcBasisFunctions( vspan, v, q, V ); | ||
|  | 	const Nw = calcBasisFunctions( wspan, w, r, W ); | ||
|  | 	const temp = []; | ||
|  | 
 | ||
|  | 	for ( let m = 0; m <= r; ++ m ) { | ||
|  | 
 | ||
|  | 		temp[ m ] = []; | ||
|  | 
 | ||
|  | 		for ( let l = 0; l <= q; ++ l ) { | ||
|  | 
 | ||
|  | 			temp[ m ][ l ] = new Vector4( 0, 0, 0, 0 ); | ||
|  | 			for ( let k = 0; k <= p; ++ k ) { | ||
|  | 
 | ||
|  | 				const point = P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone(); | ||
|  | 				const w = point.w; | ||
|  | 				point.x *= w; | ||
|  | 				point.y *= w; | ||
|  | 				point.z *= w; | ||
|  | 				temp[ m ][ l ].add( point.multiplyScalar( Nu[ k ] ) ); | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | 	const Sw = new Vector4( 0, 0, 0, 0 ); | ||
|  | 	for ( let m = 0; m <= r; ++ m ) { | ||
|  | 		for ( let l = 0; l <= q; ++ l ) { | ||
|  | 
 | ||
|  | 			Sw.add( temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar( Nv[ l ] ) ); | ||
|  | 
 | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	Sw.divideScalar( Sw.w ); | ||
|  | 	target.set( Sw.x, Sw.y, Sw.z ); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | export { | ||
|  | 	findSpan, | ||
|  | 	calcBasisFunctions, | ||
|  | 	calcBSplinePoint, | ||
|  | 	calcBasisFunctionDerivatives, | ||
|  | 	calcBSplineDerivatives, | ||
|  | 	calcKoverI, | ||
|  | 	calcRationalCurveDerivatives, | ||
|  | 	calcNURBSDerivatives, | ||
|  | 	calcSurfacePoint, | ||
|  | 	calcVolumePoint, | ||
|  | }; |