290 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			290 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
|  | import { | ||
|  | 	Vector2, | ||
|  | 	Vector3 | ||
|  | } from 'three'; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Shaders to render 3D volumes using raycasting. | ||
|  |  * The applied techniques are based on similar implementations in the Visvis and Vispy projects. | ||
|  |  * This is not the only approach, therefore it's marked 1. | ||
|  |  */ | ||
|  | 
 | ||
|  | const VolumeRenderShader1 = { | ||
|  | 
 | ||
|  | 	uniforms: { | ||
|  | 		'u_size': { value: new Vector3( 1, 1, 1 ) }, | ||
|  | 		'u_renderstyle': { value: 0 }, | ||
|  | 		'u_renderthreshold': { value: 0.5 }, | ||
|  | 		'u_clim': { value: new Vector2( 1, 1 ) }, | ||
|  | 		'u_data': { value: null }, | ||
|  | 		'u_cmdata': { value: null } | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	vertexShader: /* glsl */`
 | ||
|  | 
 | ||
|  | 		varying vec4 v_nearpos; | ||
|  | 		varying vec4 v_farpos; | ||
|  | 		varying vec3 v_position; | ||
|  | 
 | ||
|  | 		void main() { | ||
|  | 				// Prepare transforms to map to "camera view". See also:
 | ||
|  | 				// https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
 | ||
|  | 				mat4 viewtransformf = modelViewMatrix; | ||
|  | 				mat4 viewtransformi = inverse(modelViewMatrix); | ||
|  | 
 | ||
|  | 				// Project local vertex coordinate to camera position. Then do a step
 | ||
|  | 				// backward (in cam coords) to the near clipping plane, and project back. Do
 | ||
|  | 				// the same for the far clipping plane. This gives us all the information we
 | ||
|  | 				// need to calculate the ray and truncate it to the viewing cone.
 | ||
|  | 				vec4 position4 = vec4(position, 1.0); | ||
|  | 				vec4 pos_in_cam = viewtransformf * position4; | ||
|  | 
 | ||
|  | 				// Intersection of ray and near clipping plane (z = -1 in clip coords)
 | ||
|  | 				pos_in_cam.z = -pos_in_cam.w; | ||
|  | 				v_nearpos = viewtransformi * pos_in_cam; | ||
|  | 
 | ||
|  | 				// Intersection of ray and far clipping plane (z = +1 in clip coords)
 | ||
|  | 				pos_in_cam.z = pos_in_cam.w; | ||
|  | 				v_farpos = viewtransformi * pos_in_cam; | ||
|  | 
 | ||
|  | 				// Set varyings and output pos
 | ||
|  | 				v_position = position; | ||
|  | 				gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4; | ||
|  | 		}`,
 | ||
|  | 
 | ||
|  | 	fragmentShader: /* glsl */`
 | ||
|  | 
 | ||
|  | 				precision highp float; | ||
|  | 				precision mediump sampler3D; | ||
|  | 
 | ||
|  | 				uniform vec3 u_size; | ||
|  | 				uniform int u_renderstyle; | ||
|  | 				uniform float u_renderthreshold; | ||
|  | 				uniform vec2 u_clim; | ||
|  | 
 | ||
|  | 				uniform sampler3D u_data; | ||
|  | 				uniform sampler2D u_cmdata; | ||
|  | 
 | ||
|  | 				varying vec3 v_position; | ||
|  | 				varying vec4 v_nearpos; | ||
|  | 				varying vec4 v_farpos; | ||
|  | 
 | ||
|  | 				// The maximum distance through our rendering volume is sqrt(3).
 | ||
|  | 				const int MAX_STEPS = 887;	// 887 for 512^3, 1774 for 1024^3
 | ||
|  | 				const int REFINEMENT_STEPS = 4; | ||
|  | 				const float relative_step_size = 1.0; | ||
|  | 				const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0); | ||
|  | 				const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0); | ||
|  | 				const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0); | ||
|  | 				const float shininess = 40.0; | ||
|  | 
 | ||
|  | 				void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray); | ||
|  | 				void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray); | ||
|  | 
 | ||
|  | 				float sample1(vec3 texcoords); | ||
|  | 				vec4 apply_colormap(float val); | ||
|  | 				vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray); | ||
|  | 
 | ||
|  | 
 | ||
|  | 				void main() { | ||
|  | 						// Normalize clipping plane info
 | ||
|  | 						vec3 farpos = v_farpos.xyz / v_farpos.w; | ||
|  | 						vec3 nearpos = v_nearpos.xyz / v_nearpos.w; | ||
|  | 
 | ||
|  | 						// Calculate unit vector pointing in the view direction through this fragment.
 | ||
|  | 						vec3 view_ray = normalize(nearpos.xyz - farpos.xyz); | ||
|  | 
 | ||
|  | 						// Compute the (negative) distance to the front surface or near clipping plane.
 | ||
|  | 						// v_position is the back face of the cuboid, so the initial distance calculated in the dot
 | ||
|  | 						// product below is the distance from near clip plane to the back of the cuboid
 | ||
|  | 						float distance = dot(nearpos - v_position, view_ray); | ||
|  | 						distance = max(distance, min((-0.5 - v_position.x) / view_ray.x, | ||
|  | 																				(u_size.x - 0.5 - v_position.x) / view_ray.x)); | ||
|  | 						distance = max(distance, min((-0.5 - v_position.y) / view_ray.y, | ||
|  | 																				(u_size.y - 0.5 - v_position.y) / view_ray.y)); | ||
|  | 						distance = max(distance, min((-0.5 - v_position.z) / view_ray.z, | ||
|  | 																				(u_size.z - 0.5 - v_position.z) / view_ray.z)); | ||
|  | 
 | ||
|  | 						// Now we have the starting position on the front surface
 | ||
|  | 						vec3 front = v_position + view_ray * distance; | ||
|  | 
 | ||
|  | 						// Decide how many steps to take
 | ||
|  | 						int nsteps = int(-distance / relative_step_size + 0.5); | ||
|  | 						if ( nsteps < 1 ) | ||
|  | 								discard; | ||
|  | 
 | ||
|  | 						// Get starting location and step vector in texture coordinates
 | ||
|  | 						vec3 step = ((v_position - front) / u_size) / float(nsteps); | ||
|  | 						vec3 start_loc = front / u_size; | ||
|  | 
 | ||
|  | 						// For testing: show the number of steps. This helps to establish
 | ||
|  | 						// whether the rays are correctly oriented
 | ||
|  | 						//'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);
 | ||
|  | 						//'return;
 | ||
|  | 
 | ||
|  | 						if (u_renderstyle == 0) | ||
|  | 								cast_mip(start_loc, step, nsteps, view_ray); | ||
|  | 						else if (u_renderstyle == 1) | ||
|  | 								cast_iso(start_loc, step, nsteps, view_ray); | ||
|  | 
 | ||
|  | 						if (gl_FragColor.a < 0.05) | ||
|  | 								discard; | ||
|  | 				} | ||
|  | 
 | ||
|  | 
 | ||
|  | 				float sample1(vec3 texcoords) { | ||
|  | 						/* Sample float value from a 3D texture. Assumes intensity data. */ | ||
|  | 						return texture(u_data, texcoords.xyz).r; | ||
|  | 				} | ||
|  | 
 | ||
|  | 
 | ||
|  | 				vec4 apply_colormap(float val) { | ||
|  | 						val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]); | ||
|  | 						return texture2D(u_cmdata, vec2(val, 0.5)); | ||
|  | 				} | ||
|  | 
 | ||
|  | 
 | ||
|  | 				void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) { | ||
|  | 
 | ||
|  | 						float max_val = -1e6; | ||
|  | 						int max_i = 100; | ||
|  | 						vec3 loc = start_loc; | ||
|  | 
 | ||
|  | 						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
 | ||
|  | 						// non-constant expression. So we use a hard-coded max, and an additional condition
 | ||
|  | 						// inside the loop.
 | ||
|  | 						for (int iter=0; iter<MAX_STEPS; iter++) { | ||
|  | 								if (iter >= nsteps) | ||
|  | 										break; | ||
|  | 								// Sample from the 3D texture
 | ||
|  | 								float val = sample1(loc); | ||
|  | 								// Apply MIP operation
 | ||
|  | 								if (val > max_val) { | ||
|  | 										max_val = val; | ||
|  | 										max_i = iter; | ||
|  | 								} | ||
|  | 								// Advance location deeper into the volume
 | ||
|  | 								loc += step; | ||
|  | 						} | ||
|  | 
 | ||
|  | 						// Refine location, gives crispier images
 | ||
|  | 						vec3 iloc = start_loc + step * (float(max_i) - 0.5); | ||
|  | 						vec3 istep = step / float(REFINEMENT_STEPS); | ||
|  | 						for (int i=0; i<REFINEMENT_STEPS; i++) { | ||
|  | 								max_val = max(max_val, sample1(iloc)); | ||
|  | 								iloc += istep; | ||
|  | 						} | ||
|  | 
 | ||
|  | 						// Resolve final color
 | ||
|  | 						gl_FragColor = apply_colormap(max_val); | ||
|  | 				} | ||
|  | 
 | ||
|  | 
 | ||
|  | 				void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) { | ||
|  | 
 | ||
|  | 						gl_FragColor = vec4(0.0);	// init transparent
 | ||
|  | 						vec4 color3 = vec4(0.0);	// final color
 | ||
|  | 						vec3 dstep = 1.5 / u_size;	// step to sample derivative
 | ||
|  | 						vec3 loc = start_loc; | ||
|  | 
 | ||
|  | 						float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]); | ||
|  | 
 | ||
|  | 						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
 | ||
|  | 						// non-constant expression. So we use a hard-coded max, and an additional condition
 | ||
|  | 						// inside the loop.
 | ||
|  | 						for (int iter=0; iter<MAX_STEPS; iter++) { | ||
|  | 								if (iter >= nsteps) | ||
|  | 										break; | ||
|  | 
 | ||
|  | 								// Sample from the 3D texture
 | ||
|  | 								float val = sample1(loc); | ||
|  | 
 | ||
|  | 								if (val > low_threshold) { | ||
|  | 										// Take the last interval in smaller steps
 | ||
|  | 										vec3 iloc = loc - 0.5 * step; | ||
|  | 										vec3 istep = step / float(REFINEMENT_STEPS); | ||
|  | 										for (int i=0; i<REFINEMENT_STEPS; i++) { | ||
|  | 												val = sample1(iloc); | ||
|  | 												if (val > u_renderthreshold) { | ||
|  | 														gl_FragColor = add_lighting(val, iloc, dstep, view_ray); | ||
|  | 														return; | ||
|  | 												} | ||
|  | 												iloc += istep; | ||
|  | 										} | ||
|  | 								} | ||
|  | 
 | ||
|  | 								// Advance location deeper into the volume
 | ||
|  | 								loc += step; | ||
|  | 						} | ||
|  | 				} | ||
|  | 
 | ||
|  | 
 | ||
|  | 				vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray) | ||
|  | 				{ | ||
|  | 					// Calculate color by incorporating lighting
 | ||
|  | 
 | ||
|  | 						// View direction
 | ||
|  | 						vec3 V = normalize(view_ray); | ||
|  | 
 | ||
|  | 						// calculate normal vector from gradient
 | ||
|  | 						vec3 N; | ||
|  | 						float val1, val2; | ||
|  | 						val1 = sample1(loc + vec3(-step[0], 0.0, 0.0)); | ||
|  | 						val2 = sample1(loc + vec3(+step[0], 0.0, 0.0)); | ||
|  | 						N[0] = val1 - val2; | ||
|  | 						val = max(max(val1, val2), val); | ||
|  | 						val1 = sample1(loc + vec3(0.0, -step[1], 0.0)); | ||
|  | 						val2 = sample1(loc + vec3(0.0, +step[1], 0.0)); | ||
|  | 						N[1] = val1 - val2; | ||
|  | 						val = max(max(val1, val2), val); | ||
|  | 						val1 = sample1(loc + vec3(0.0, 0.0, -step[2])); | ||
|  | 						val2 = sample1(loc + vec3(0.0, 0.0, +step[2])); | ||
|  | 						N[2] = val1 - val2; | ||
|  | 						val = max(max(val1, val2), val); | ||
|  | 
 | ||
|  | 						float gm = length(N); // gradient magnitude
 | ||
|  | 						N = normalize(N); | ||
|  | 
 | ||
|  | 						// Flip normal so it points towards viewer
 | ||
|  | 						float Nselect = float(dot(N, V) > 0.0); | ||
|  | 						N = (2.0 * Nselect - 1.0) * N;	// ==	Nselect * N - (1.0-Nselect)*N;
 | ||
|  | 
 | ||
|  | 						// Init colors
 | ||
|  | 						vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0); | ||
|  | 						vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0); | ||
|  | 						vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0); | ||
|  | 
 | ||
|  | 						// note: could allow multiple lights
 | ||
|  | 						for (int i=0; i<1; i++) | ||
|  | 						{ | ||
|  | 								 // Get light direction (make sure to prevent zero devision)
 | ||
|  | 								vec3 L = normalize(view_ray);	//lightDirs[i];
 | ||
|  | 								float lightEnabled = float( length(L) > 0.0 ); | ||
|  | 								L = normalize(L + (1.0 - lightEnabled)); | ||
|  | 
 | ||
|  | 								// Calculate lighting properties
 | ||
|  | 								float lambertTerm = clamp(dot(N, L), 0.0, 1.0); | ||
|  | 								vec3 H = normalize(L+V); // Halfway vector
 | ||
|  | 								float specularTerm = pow(max(dot(H, N), 0.0), shininess); | ||
|  | 
 | ||
|  | 								// Calculate mask
 | ||
|  | 								float mask1 = lightEnabled; | ||
|  | 
 | ||
|  | 								// Calculate colors
 | ||
|  | 								ambient_color +=	mask1 * ambient_color;	// * gl_LightSource[i].ambient;
 | ||
|  | 								diffuse_color +=	mask1 * lambertTerm; | ||
|  | 								specular_color += mask1 * specularTerm * specular_color; | ||
|  | 						} | ||
|  | 
 | ||
|  | 						// Calculate final color by componing different components
 | ||
|  | 						vec4 final_color; | ||
|  | 						vec4 color = apply_colormap(val); | ||
|  | 						final_color = color * (ambient_color + diffuse_color) + specular_color; | ||
|  | 						final_color.a = color.a; | ||
|  | 						return final_color; | ||
|  | 				}`
 | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | export { VolumeRenderShader1 }; |