425 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			425 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| 
								 | 
							
								import {
							 | 
						||
| 
								 | 
							
									DataTexture,
							 | 
						||
| 
								 | 
							
									Matrix4,
							 | 
						||
| 
								 | 
							
									RepeatWrapping,
							 | 
						||
| 
								 | 
							
									Vector2,
							 | 
						||
| 
								 | 
							
									Vector3,
							 | 
						||
| 
								 | 
							
								} from 'three';
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * References:
							 | 
						||
| 
								 | 
							
								 * - implemented algorithm - GTAO
							 | 
						||
| 
								 | 
							
								 *   - https://iryoku.com/downloads/Practical-Realtime-Strategies-for-Accurate-Indirect-Occlusion.pdf
							 | 
						||
| 
								 | 
							
								 *   - https://github.com/Patapom/GodComplex/blob/master/Tests/TestHBIL/2018%20Mayaux%20-%20Horizon-Based%20Indirect%20Lighting%20(HBIL).pdf
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * - other AO algorithms that are not implemented here:
							 | 
						||
| 
								 | 
							
								 *   - Screen Space Ambient Occlusion (SSAO), see also SSAOShader.js
							 | 
						||
| 
								 | 
							
								 *	 - http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
							 | 
						||
| 
								 | 
							
								 *	 - https://learnopengl.com/Advanced-Lighting/SSAO
							 | 
						||
| 
								 | 
							
								 *	 - https://creativecoding.soe.ucsc.edu/courses/cmpm164/_schedule/AmbientOcclusion.pdf
							 | 
						||
| 
								 | 
							
								 *	 - https://drive.google.com/file/d/1SyagcEVplIm2KkRD3WQYSO9O0Iyi1hfy/edit
							 | 
						||
| 
								 | 
							
								 *   - Scalable Ambient Occlusion (SAO), see also SAOShader.js
							 | 
						||
| 
								 | 
							
								 *	 - https://casual-effects.com/research/McGuire2012SAO/index.html
							 | 
						||
| 
								 | 
							
								 *	   - https://research.nvidia.com/sites/default/files/pubs/2012-06_Scalable-Ambient-Obscurance/McGuire12SAO.pdf
							 | 
						||
| 
								 | 
							
								 *   - N8HO
							 | 
						||
| 
								 | 
							
								 *	 - https://github.com/N8python/n8ao
							 | 
						||
| 
								 | 
							
								 *   - Horizon Based Ambient Occlusion (HBAO)
							 | 
						||
| 
								 | 
							
								 *	 - http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.577.2286&rep=rep1&type=pdf
							 | 
						||
| 
								 | 
							
								 *	 - https://www.derschmale.com/2013/12/20/an-alternative-implementation-for-hbao-2/
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * - further reading
							 | 
						||
| 
								 | 
							
								 * 	 - https://ceur-ws.org/Vol-3027/paper5.pdf
							 | 
						||
| 
								 | 
							
								 *   - https://www.comp.nus.edu.sg/~lowkl/publications/mssao_visual_computer_2012.pdf
							 | 
						||
| 
								 | 
							
								 *   - https://web.ics.purdue.edu/~tmcgraw/papers/mcgraw-ao-2008.pdf
							 | 
						||
| 
								 | 
							
								 *   - https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
							 | 
						||
| 
								 | 
							
								 *   - https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.390.2463&rep=rep1&type=pdf
							 | 
						||
| 
								 | 
							
								 *   - https://www.intel.com/content/www/us/en/developer/articles/technical/adaptive-screen-space-ambient-occlusion.html
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								const GTAOShader = {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									name: 'GTAOShader',
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									defines: {
							 | 
						||
| 
								 | 
							
										PERSPECTIVE_CAMERA: 1,
							 | 
						||
| 
								 | 
							
										SAMPLES: 16,
							 | 
						||
| 
								 | 
							
										NORMAL_VECTOR_TYPE: 1,
							 | 
						||
| 
								 | 
							
										DEPTH_SWIZZLING: 'x',
							 | 
						||
| 
								 | 
							
										SCREEN_SPACE_RADIUS: 0,
							 | 
						||
| 
								 | 
							
										SCREEN_SPACE_RADIUS_SCALE: 100.0,
							 | 
						||
| 
								 | 
							
										SCENE_CLIP_BOX: 0,
							 | 
						||
| 
								 | 
							
									},
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									uniforms: {
							 | 
						||
| 
								 | 
							
										tNormal: { value: null },
							 | 
						||
| 
								 | 
							
										tDepth: { value: null },
							 | 
						||
| 
								 | 
							
										tNoise: { value: null },
							 | 
						||
| 
								 | 
							
										resolution: { value: new Vector2() },
							 | 
						||
| 
								 | 
							
										cameraNear: { value: null },
							 | 
						||
| 
								 | 
							
										cameraFar: { value: null },
							 | 
						||
| 
								 | 
							
										cameraProjectionMatrix: { value: new Matrix4() },
							 | 
						||
| 
								 | 
							
										cameraProjectionMatrixInverse: { value: new Matrix4() },
							 | 
						||
| 
								 | 
							
										cameraWorldMatrix: { value: new Matrix4() },
							 | 
						||
| 
								 | 
							
										radius: { value: 0.25 },
							 | 
						||
| 
								 | 
							
										distanceExponent: { value: 1. },
							 | 
						||
| 
								 | 
							
										thickness: { value: 1. },
							 | 
						||
| 
								 | 
							
										distanceFallOff: { value: 1. },
							 | 
						||
| 
								 | 
							
										scale: { value: 1. },
							 | 
						||
| 
								 | 
							
										sceneBoxMin: { value: new Vector3( - 1, - 1, - 1 ) },
							 | 
						||
| 
								 | 
							
										sceneBoxMax: { value: new Vector3( 1, 1, 1 ) },
							 | 
						||
| 
								 | 
							
									},
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									vertexShader: /* glsl */`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										varying vec2 vUv;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										void main() {
							 | 
						||
| 
								 | 
							
											vUv = uv;
							 | 
						||
| 
								 | 
							
											gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
							 | 
						||
| 
								 | 
							
										}`,
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									fragmentShader: /* glsl */`
							 | 
						||
| 
								 | 
							
										varying vec2 vUv;
							 | 
						||
| 
								 | 
							
										uniform highp sampler2D tNormal;
							 | 
						||
| 
								 | 
							
										uniform highp sampler2D tDepth;
							 | 
						||
| 
								 | 
							
										uniform sampler2D tNoise;
							 | 
						||
| 
								 | 
							
										uniform vec2 resolution;
							 | 
						||
| 
								 | 
							
										uniform float cameraNear;
							 | 
						||
| 
								 | 
							
										uniform float cameraFar;
							 | 
						||
| 
								 | 
							
										uniform mat4 cameraProjectionMatrix;
							 | 
						||
| 
								 | 
							
										uniform mat4 cameraProjectionMatrixInverse;		
							 | 
						||
| 
								 | 
							
										uniform mat4 cameraWorldMatrix;
							 | 
						||
| 
								 | 
							
										uniform float radius;
							 | 
						||
| 
								 | 
							
										uniform float distanceExponent;
							 | 
						||
| 
								 | 
							
										uniform float thickness;
							 | 
						||
| 
								 | 
							
										uniform float distanceFallOff;
							 | 
						||
| 
								 | 
							
										uniform float scale;
							 | 
						||
| 
								 | 
							
										#if SCENE_CLIP_BOX == 1
							 | 
						||
| 
								 | 
							
											uniform vec3 sceneBoxMin;
							 | 
						||
| 
								 | 
							
											uniform vec3 sceneBoxMax;
							 | 
						||
| 
								 | 
							
										#endif
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										#include <common>
							 | 
						||
| 
								 | 
							
										#include <packing>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										#ifndef FRAGMENT_OUTPUT
							 | 
						||
| 
								 | 
							
										#define FRAGMENT_OUTPUT vec4(vec3(ao), 1.)
							 | 
						||
| 
								 | 
							
										#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										vec3 getViewPosition(const in vec2 screenPosition, const in float depth) {
							 | 
						||
| 
								 | 
							
											vec4 clipSpacePosition = vec4(vec3(screenPosition, depth) * 2.0 - 1.0, 1.0);
							 | 
						||
| 
								 | 
							
											vec4 viewSpacePosition = cameraProjectionMatrixInverse * clipSpacePosition;
							 | 
						||
| 
								 | 
							
											return viewSpacePosition.xyz / viewSpacePosition.w;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										float getDepth(const vec2 uv) {  
							 | 
						||
| 
								 | 
							
											return textureLod(tDepth, uv.xy, 0.0).DEPTH_SWIZZLING;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										float fetchDepth(const ivec2 uv) {   
							 | 
						||
| 
								 | 
							
											return texelFetch(tDepth, uv.xy, 0).DEPTH_SWIZZLING;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										float getViewZ(const in float depth) {
							 | 
						||
| 
								 | 
							
											#if PERSPECTIVE_CAMERA == 1
							 | 
						||
| 
								 | 
							
												return perspectiveDepthToViewZ(depth, cameraNear, cameraFar);
							 | 
						||
| 
								 | 
							
											#else
							 | 
						||
| 
								 | 
							
												return orthographicDepthToViewZ(depth, cameraNear, cameraFar);
							 | 
						||
| 
								 | 
							
											#endif
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										vec3 computeNormalFromDepth(const vec2 uv) {
							 | 
						||
| 
								 | 
							
											vec2 size = vec2(textureSize(tDepth, 0));
							 | 
						||
| 
								 | 
							
											ivec2 p = ivec2(uv * size);
							 | 
						||
| 
								 | 
							
											float c0 = fetchDepth(p);
							 | 
						||
| 
								 | 
							
											float l2 = fetchDepth(p - ivec2(2, 0));
							 | 
						||
| 
								 | 
							
											float l1 = fetchDepth(p - ivec2(1, 0));
							 | 
						||
| 
								 | 
							
											float r1 = fetchDepth(p + ivec2(1, 0));
							 | 
						||
| 
								 | 
							
											float r2 = fetchDepth(p + ivec2(2, 0));
							 | 
						||
| 
								 | 
							
											float b2 = fetchDepth(p - ivec2(0, 2));
							 | 
						||
| 
								 | 
							
											float b1 = fetchDepth(p - ivec2(0, 1));
							 | 
						||
| 
								 | 
							
											float t1 = fetchDepth(p + ivec2(0, 1));
							 | 
						||
| 
								 | 
							
											float t2 = fetchDepth(p + ivec2(0, 2));
							 | 
						||
| 
								 | 
							
											float dl = abs((2.0 * l1 - l2) - c0);
							 | 
						||
| 
								 | 
							
											float dr = abs((2.0 * r1 - r2) - c0);
							 | 
						||
| 
								 | 
							
											float db = abs((2.0 * b1 - b2) - c0);
							 | 
						||
| 
								 | 
							
											float dt = abs((2.0 * t1 - t2) - c0);
							 | 
						||
| 
								 | 
							
											vec3 ce = getViewPosition(uv, c0).xyz;
							 | 
						||
| 
								 | 
							
											vec3 dpdx = (dl < dr) ? ce - getViewPosition((uv - vec2(1.0 / size.x, 0.0)), l1).xyz : -ce + getViewPosition((uv + vec2(1.0 / size.x, 0.0)), r1).xyz;
							 | 
						||
| 
								 | 
							
											vec3 dpdy = (db < dt) ? ce - getViewPosition((uv - vec2(0.0, 1.0 / size.y)), b1).xyz : -ce + getViewPosition((uv + vec2(0.0, 1.0 / size.y)), t1).xyz;
							 | 
						||
| 
								 | 
							
											return normalize(cross(dpdx, dpdy));
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										vec3 getViewNormal(const vec2 uv) {
							 | 
						||
| 
								 | 
							
											#if NORMAL_VECTOR_TYPE == 2
							 | 
						||
| 
								 | 
							
												return normalize(textureLod(tNormal, uv, 0.).rgb);
							 | 
						||
| 
								 | 
							
											#elif NORMAL_VECTOR_TYPE == 1
							 | 
						||
| 
								 | 
							
												return unpackRGBToNormal(textureLod(tNormal, uv, 0.).rgb);
							 | 
						||
| 
								 | 
							
											#else
							 | 
						||
| 
								 | 
							
												return computeNormalFromDepth(uv);
							 | 
						||
| 
								 | 
							
											#endif
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										vec3 getSceneUvAndDepth(vec3 sampleViewPos) {
							 | 
						||
| 
								 | 
							
											vec4 sampleClipPos = cameraProjectionMatrix * vec4(sampleViewPos, 1.);
							 | 
						||
| 
								 | 
							
											vec2 sampleUv = sampleClipPos.xy / sampleClipPos.w * 0.5 + 0.5;
							 | 
						||
| 
								 | 
							
											float sampleSceneDepth = getDepth(sampleUv);
							 | 
						||
| 
								 | 
							
											return vec3(sampleUv, sampleSceneDepth);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										void main() {
							 | 
						||
| 
								 | 
							
											float depth = getDepth(vUv.xy);
							 | 
						||
| 
								 | 
							
											if (depth >= 1.0) {
							 | 
						||
| 
								 | 
							
												discard;
							 | 
						||
| 
								 | 
							
												return;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											vec3 viewPos = getViewPosition(vUv, depth);
							 | 
						||
| 
								 | 
							
											vec3 viewNormal = getViewNormal(vUv);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											float radiusToUse = radius;
							 | 
						||
| 
								 | 
							
											float distanceFalloffToUse = thickness;
							 | 
						||
| 
								 | 
							
											#if SCREEN_SPACE_RADIUS == 1
							 | 
						||
| 
								 | 
							
												float radiusScale = getViewPosition(vec2(0.5 + float(SCREEN_SPACE_RADIUS_SCALE) / resolution.x, 0.0), depth).x;
							 | 
						||
| 
								 | 
							
												radiusToUse *= radiusScale;
							 | 
						||
| 
								 | 
							
												distanceFalloffToUse *= radiusScale;
							 | 
						||
| 
								 | 
							
											#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											#if SCENE_CLIP_BOX == 1
							 | 
						||
| 
								 | 
							
												vec3 worldPos = (cameraWorldMatrix * vec4(viewPos, 1.0)).xyz;
							 | 
						||
| 
								 | 
							
												float boxDistance = length(max(vec3(0.0), max(sceneBoxMin - worldPos, worldPos - sceneBoxMax)));
							 | 
						||
| 
								 | 
							
												if (boxDistance > radiusToUse) {
							 | 
						||
| 
								 | 
							
													discard;
							 | 
						||
| 
								 | 
							
													return;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											#endif
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											vec2 noiseResolution = vec2(textureSize(tNoise, 0));
							 | 
						||
| 
								 | 
							
											vec2 noiseUv = vUv * resolution / noiseResolution;
							 | 
						||
| 
								 | 
							
											vec4 noiseTexel = textureLod(tNoise, noiseUv, 0.0);
							 | 
						||
| 
								 | 
							
											vec3 randomVec = noiseTexel.xyz * 2.0 - 1.0;
							 | 
						||
| 
								 | 
							
											vec3 tangent = normalize(vec3(randomVec.xy, 0.));
							 | 
						||
| 
								 | 
							
											vec3 bitangent = vec3(-tangent.y, tangent.x, 0.);
							 | 
						||
| 
								 | 
							
											mat3 kernelMatrix = mat3(tangent, bitangent, vec3(0., 0., 1.));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											const int DIRECTIONS = SAMPLES < 30 ? 3 : 5;
							 | 
						||
| 
								 | 
							
											const int STEPS = (SAMPLES + DIRECTIONS - 1) / DIRECTIONS;
							 | 
						||
| 
								 | 
							
											float ao = 0.0, totalWeight = 0.0;
							 | 
						||
| 
								 | 
							
											for (int i = 0; i < DIRECTIONS; ++i) {
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												float angle = float(i) / float(DIRECTIONS) * PI;
							 | 
						||
| 
								 | 
							
												vec4 sampleDir = vec4(cos(angle), sin(angle), 0., 0.5 + 0.5 * noiseTexel.w); 
							 | 
						||
| 
								 | 
							
												sampleDir.xyz = normalize(kernelMatrix * sampleDir.xyz);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												vec3 viewDir = normalize(-viewPos.xyz);
							 | 
						||
| 
								 | 
							
												vec3 sliceBitangent = normalize(cross(sampleDir.xyz, viewDir));
							 | 
						||
| 
								 | 
							
												vec3 sliceTangent = cross(sliceBitangent, viewDir);
							 | 
						||
| 
								 | 
							
												vec3 normalInSlice = normalize(viewNormal - sliceBitangent * dot(viewNormal, sliceBitangent));
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												vec3 tangentToNormalInSlice = cross(normalInSlice, sliceBitangent);
							 | 
						||
| 
								 | 
							
												vec2 cosHorizons = vec2(dot(viewDir, tangentToNormalInSlice), dot(viewDir, -tangentToNormalInSlice));
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												for (int j = 0; j < STEPS; ++j) {
							 | 
						||
| 
								 | 
							
													vec3 sampleViewOffset = sampleDir.xyz * radiusToUse * sampleDir.w * pow(float(j + 1) / float(STEPS), distanceExponent);	
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
													vec3 sampleSceneUvDepth = getSceneUvAndDepth(viewPos + sampleViewOffset);
							 | 
						||
| 
								 | 
							
													vec3 sampleSceneViewPos = getViewPosition(sampleSceneUvDepth.xy, sampleSceneUvDepth.z);
							 | 
						||
| 
								 | 
							
													vec3 viewDelta = sampleSceneViewPos - viewPos;
							 | 
						||
| 
								 | 
							
													if (abs(viewDelta.z) < thickness) {
							 | 
						||
| 
								 | 
							
														float sampleCosHorizon = dot(viewDir, normalize(viewDelta));
							 | 
						||
| 
								 | 
							
														cosHorizons.x += max(0., (sampleCosHorizon - cosHorizons.x) * mix(1., 2. / float(j + 2), distanceFallOff));
							 | 
						||
| 
								 | 
							
													}		
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
													sampleSceneUvDepth = getSceneUvAndDepth(viewPos - sampleViewOffset);
							 | 
						||
| 
								 | 
							
													sampleSceneViewPos = getViewPosition(sampleSceneUvDepth.xy, sampleSceneUvDepth.z);
							 | 
						||
| 
								 | 
							
													viewDelta = sampleSceneViewPos - viewPos;
							 | 
						||
| 
								 | 
							
													if (abs(viewDelta.z) < thickness) {
							 | 
						||
| 
								 | 
							
														float sampleCosHorizon = dot(viewDir, normalize(viewDelta));
							 | 
						||
| 
								 | 
							
														cosHorizons.y += max(0., (sampleCosHorizon - cosHorizons.y) * mix(1., 2. / float(j + 2), distanceFallOff));
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												vec2 sinHorizons = sqrt(1. - cosHorizons * cosHorizons);
							 | 
						||
| 
								 | 
							
												float nx = dot(normalInSlice, sliceTangent);
							 | 
						||
| 
								 | 
							
												float ny = dot(normalInSlice, viewDir);
							 | 
						||
| 
								 | 
							
												float nxb = 1. / 2. * (acos(cosHorizons.y) - acos(cosHorizons.x) + sinHorizons.x * cosHorizons.x - sinHorizons.y * cosHorizons.y);
							 | 
						||
| 
								 | 
							
												float nyb = 1. / 2. * (2. - cosHorizons.x * cosHorizons.x - cosHorizons.y * cosHorizons.y);
							 | 
						||
| 
								 | 
							
												float occlusion = nx * nxb + ny * nyb;
							 | 
						||
| 
								 | 
							
												ao += occlusion;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											ao = clamp(ao / float(DIRECTIONS), 0., 1.);		
							 | 
						||
| 
								 | 
							
										#if SCENE_CLIP_BOX == 1
							 | 
						||
| 
								 | 
							
											ao = mix(ao, 1., smoothstep(0., radiusToUse, boxDistance));
							 | 
						||
| 
								 | 
							
										#endif
							 | 
						||
| 
								 | 
							
											ao = pow(ao, scale);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											gl_FragColor = FRAGMENT_OUTPUT;
							 | 
						||
| 
								 | 
							
										}`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								const GTAODepthShader = {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									name: 'GTAODepthShader',
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									defines: {
							 | 
						||
| 
								 | 
							
										PERSPECTIVE_CAMERA: 1
							 | 
						||
| 
								 | 
							
									},
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									uniforms: {
							 | 
						||
| 
								 | 
							
										tDepth: { value: null },
							 | 
						||
| 
								 | 
							
										cameraNear: { value: null },
							 | 
						||
| 
								 | 
							
										cameraFar: { value: null },
							 | 
						||
| 
								 | 
							
									},
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									vertexShader: /* glsl */`
							 | 
						||
| 
								 | 
							
										varying vec2 vUv;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										void main() {
							 | 
						||
| 
								 | 
							
											vUv = uv;
							 | 
						||
| 
								 | 
							
											gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
							 | 
						||
| 
								 | 
							
										}`,
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									fragmentShader: /* glsl */`
							 | 
						||
| 
								 | 
							
										uniform sampler2D tDepth;
							 | 
						||
| 
								 | 
							
										uniform float cameraNear;
							 | 
						||
| 
								 | 
							
										uniform float cameraFar;
							 | 
						||
| 
								 | 
							
										varying vec2 vUv;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										#include <packing>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										float getLinearDepth( const in vec2 screenPosition ) {
							 | 
						||
| 
								 | 
							
											#if PERSPECTIVE_CAMERA == 1
							 | 
						||
| 
								 | 
							
												float fragCoordZ = texture2D( tDepth, screenPosition ).x;
							 | 
						||
| 
								 | 
							
												float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
							 | 
						||
| 
								 | 
							
												return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
							 | 
						||
| 
								 | 
							
											#else
							 | 
						||
| 
								 | 
							
												return texture2D( tDepth, screenPosition ).x;
							 | 
						||
| 
								 | 
							
											#endif
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										void main() {
							 | 
						||
| 
								 | 
							
											float depth = getLinearDepth( vUv );
							 | 
						||
| 
								 | 
							
											gl_FragColor = vec4( vec3( 1.0 - depth ), 1.0 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								const GTAOBlendShader = {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									name: 'GTAOBlendShader',
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									uniforms: {
							 | 
						||
| 
								 | 
							
										tDiffuse: { value: null },
							 | 
						||
| 
								 | 
							
										intensity: { value: 1.0 }
							 | 
						||
| 
								 | 
							
									},
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									vertexShader: /* glsl */`
							 | 
						||
| 
								 | 
							
										varying vec2 vUv;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										void main() {
							 | 
						||
| 
								 | 
							
											vUv = uv;
							 | 
						||
| 
								 | 
							
											gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
							 | 
						||
| 
								 | 
							
										}`,
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									fragmentShader: /* glsl */`
							 | 
						||
| 
								 | 
							
										uniform float intensity;
							 | 
						||
| 
								 | 
							
										uniform sampler2D tDiffuse;
							 | 
						||
| 
								 | 
							
										varying vec2 vUv;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										void main() {
							 | 
						||
| 
								 | 
							
											vec4 texel = texture2D( tDiffuse, vUv );
							 | 
						||
| 
								 | 
							
											gl_FragColor = vec4(mix(vec3(1.), texel.rgb, intensity), texel.a);
							 | 
						||
| 
								 | 
							
										}`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								function generateMagicSquareNoise( size = 5 ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const noiseSize = Math.floor( size ) % 2 === 0 ? Math.floor( size ) + 1 : Math.floor( size );
							 | 
						||
| 
								 | 
							
									const magicSquare = generateMagicSquare( noiseSize );
							 | 
						||
| 
								 | 
							
									const noiseSquareSize = magicSquare.length;
							 | 
						||
| 
								 | 
							
									const data = new Uint8Array( noiseSquareSize * 4 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let inx = 0; inx < noiseSquareSize; ++ inx ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										const iAng = magicSquare[ inx ];
							 | 
						||
| 
								 | 
							
										const angle = ( 2 * Math.PI * iAng ) / noiseSquareSize;
							 | 
						||
| 
								 | 
							
										const randomVec = new Vector3(
							 | 
						||
| 
								 | 
							
											Math.cos( angle ),
							 | 
						||
| 
								 | 
							
											Math.sin( angle ),
							 | 
						||
| 
								 | 
							
											0
							 | 
						||
| 
								 | 
							
										).normalize();
							 | 
						||
| 
								 | 
							
										data[ inx * 4 ] = ( randomVec.x * 0.5 + 0.5 ) * 255;
							 | 
						||
| 
								 | 
							
										data[ inx * 4 + 1 ] = ( randomVec.y * 0.5 + 0.5 ) * 255;
							 | 
						||
| 
								 | 
							
										data[ inx * 4 + 2 ] = 127;
							 | 
						||
| 
								 | 
							
										data[ inx * 4 + 3 ] = 255;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const noiseTexture = new DataTexture( data, noiseSize, noiseSize );
							 | 
						||
| 
								 | 
							
									noiseTexture.wrapS = RepeatWrapping;
							 | 
						||
| 
								 | 
							
									noiseTexture.wrapT = RepeatWrapping;
							 | 
						||
| 
								 | 
							
									noiseTexture.needsUpdate = true;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return noiseTexture;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								function generateMagicSquare( size ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const noiseSize = Math.floor( size ) % 2 === 0 ? Math.floor( size ) + 1 : Math.floor( size );
							 | 
						||
| 
								 | 
							
									const noiseSquareSize = noiseSize * noiseSize;
							 | 
						||
| 
								 | 
							
									const magicSquare = Array( noiseSquareSize ).fill( 0 );
							 | 
						||
| 
								 | 
							
									let i = Math.floor( noiseSize / 2 );
							 | 
						||
| 
								 | 
							
									let j = noiseSize - 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for ( let num = 1; num <= noiseSquareSize; ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										if ( i === - 1 && j === noiseSize ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											j = noiseSize - 2;
							 | 
						||
| 
								 | 
							
											i = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										} else {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											if ( j === noiseSize ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												j = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											if ( i < 0 ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												i = noiseSize - 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										if ( magicSquare[ i * noiseSize + j ] !== 0 ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											j -= 2;
							 | 
						||
| 
								 | 
							
											i ++;
							 | 
						||
| 
								 | 
							
											continue;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										} else {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											magicSquare[ i * noiseSize + j ] = num ++;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										j ++;
							 | 
						||
| 
								 | 
							
										i --;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return magicSquare;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								export { generateMagicSquareNoise, GTAOShader, GTAODepthShader, GTAOBlendShader };
							 |