441 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			441 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
|  | import { | ||
|  | 	Camera, | ||
|  | 	ClampToEdgeWrapping, | ||
|  | 	DataTexture, | ||
|  | 	FloatType, | ||
|  | 	Mesh, | ||
|  | 	NearestFilter, | ||
|  | 	PlaneGeometry, | ||
|  | 	RGBAFormat, | ||
|  | 	Scene, | ||
|  | 	ShaderMaterial, | ||
|  | 	WebGLRenderTarget | ||
|  | } from 'three'; | ||
|  | 
 | ||
|  | /** | ||
|  |  * GPUComputationRenderer, based on SimulationRenderer by zz85 | ||
|  |  * | ||
|  |  * The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats | ||
|  |  * for each compute element (texel) | ||
|  |  * | ||
|  |  * Each variable has a fragment shader that defines the computation made to obtain the variable in question. | ||
|  |  * You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader | ||
|  |  * (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency. | ||
|  |  * | ||
|  |  * The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used | ||
|  |  * as inputs to render the textures of the next frame. | ||
|  |  * | ||
|  |  * The render targets of the variables can be used as input textures for your visualization shaders. | ||
|  |  * | ||
|  |  * Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers. | ||
|  |  * a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity... | ||
|  |  * | ||
|  |  * The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example: | ||
|  |  * #DEFINE resolution vec2( 1024.0, 1024.0 ) | ||
|  |  * | ||
|  |  * ------------- | ||
|  |  * | ||
|  |  * Basic use: | ||
|  |  * | ||
|  |  * // Initialization...
 | ||
|  |  * | ||
|  |  * // Create computation renderer
 | ||
|  |  * const gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer ); | ||
|  |  * | ||
|  |  * // Create initial state float textures
 | ||
|  |  * const pos0 = gpuCompute.createTexture(); | ||
|  |  * const vel0 = gpuCompute.createTexture(); | ||
|  |  * // and fill in here the texture data...
 | ||
|  |  * | ||
|  |  * // Add texture variables
 | ||
|  |  * const velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 ); | ||
|  |  * const posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 ); | ||
|  |  * | ||
|  |  * // Add variable dependencies
 | ||
|  |  * gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] ); | ||
|  |  * gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] ); | ||
|  |  * | ||
|  |  * // Add custom uniforms
 | ||
|  |  * velVar.material.uniforms.time = { value: 0.0 }; | ||
|  |  * | ||
|  |  * // Check for completeness
 | ||
|  |  * const error = gpuCompute.init(); | ||
|  |  * if ( error !== null ) { | ||
|  |  *		console.error( error ); | ||
|  |   * } | ||
|  |  * | ||
|  |  * | ||
|  |  * // In each frame...
 | ||
|  |  * | ||
|  |  * // Compute!
 | ||
|  |  * gpuCompute.compute(); | ||
|  |  * | ||
|  |  * // Update texture uniforms in your visualization materials with the gpu renderer output
 | ||
|  |  * myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture; | ||
|  |  * | ||
|  |  * // Do your rendering
 | ||
|  |  * renderer.render( myScene, myCamera ); | ||
|  |  * | ||
|  |  * ------------- | ||
|  |  * | ||
|  |  * Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures) | ||
|  |  * Note that the shaders can have multiple input textures. | ||
|  |  * | ||
|  |  * const myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } ); | ||
|  |  * const myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } ); | ||
|  |  * | ||
|  |  * const inputTexture = gpuCompute.createTexture(); | ||
|  |  * | ||
|  |  * // Fill in here inputTexture...
 | ||
|  |  * | ||
|  |  * myFilter1.uniforms.theTexture.value = inputTexture; | ||
|  |  * | ||
|  |  * const myRenderTarget = gpuCompute.createRenderTarget(); | ||
|  |  * myFilter2.uniforms.theTexture.value = myRenderTarget.texture; | ||
|  |  * | ||
|  |  * const outputRenderTarget = gpuCompute.createRenderTarget(); | ||
|  |  * | ||
|  |  * // Now use the output texture where you want:
 | ||
|  |  * myMaterial.uniforms.map.value = outputRenderTarget.texture; | ||
|  |  * | ||
|  |  * // And compute each frame, before rendering to screen:
 | ||
|  |  * gpuCompute.doRenderTarget( myFilter1, myRenderTarget ); | ||
|  |  * gpuCompute.doRenderTarget( myFilter2, outputRenderTarget ); | ||
|  |  * | ||
|  |  * | ||
|  |  * | ||
|  |  * @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements. | ||
|  |  * @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements. | ||
|  |  * @param {WebGLRenderer} renderer The renderer | ||
|  |   */ | ||
|  | 
 | ||
|  | class GPUComputationRenderer { | ||
|  | 
 | ||
|  | 	constructor( sizeX, sizeY, renderer ) { | ||
|  | 
 | ||
|  | 		this.variables = []; | ||
|  | 
 | ||
|  | 		this.currentTextureIndex = 0; | ||
|  | 
 | ||
|  | 		let dataType = FloatType; | ||
|  | 
 | ||
|  | 		const scene = new Scene(); | ||
|  | 
 | ||
|  | 		const camera = new Camera(); | ||
|  | 		camera.position.z = 1; | ||
|  | 
 | ||
|  | 		const passThruUniforms = { | ||
|  | 			passThruTexture: { value: null } | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		const passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms ); | ||
|  | 
 | ||
|  | 		const mesh = new Mesh( new PlaneGeometry( 2, 2 ), passThruShader ); | ||
|  | 		scene.add( mesh ); | ||
|  | 
 | ||
|  | 
 | ||
|  | 		this.setDataType = function ( type ) { | ||
|  | 
 | ||
|  | 			dataType = type; | ||
|  | 			return this; | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) { | ||
|  | 
 | ||
|  | 			const material = this.createShaderMaterial( computeFragmentShader ); | ||
|  | 
 | ||
|  | 			const variable = { | ||
|  | 				name: variableName, | ||
|  | 				initialValueTexture: initialValueTexture, | ||
|  | 				material: material, | ||
|  | 				dependencies: null, | ||
|  | 				renderTargets: [], | ||
|  | 				wrapS: null, | ||
|  | 				wrapT: null, | ||
|  | 				minFilter: NearestFilter, | ||
|  | 				magFilter: NearestFilter | ||
|  | 			}; | ||
|  | 
 | ||
|  | 			this.variables.push( variable ); | ||
|  | 
 | ||
|  | 			return variable; | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		this.setVariableDependencies = function ( variable, dependencies ) { | ||
|  | 
 | ||
|  | 			variable.dependencies = dependencies; | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		this.init = function () { | ||
|  | 
 | ||
|  | 			if ( renderer.capabilities.maxVertexTextures === 0 ) { | ||
|  | 
 | ||
|  | 				return 'No support for vertex shader textures.'; | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 			for ( let i = 0; i < this.variables.length; i ++ ) { | ||
|  | 
 | ||
|  | 				const variable = this.variables[ i ]; | ||
|  | 
 | ||
|  | 				// Creates rendertargets and initialize them with input texture
 | ||
|  | 				variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter ); | ||
|  | 				variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter ); | ||
|  | 				this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] ); | ||
|  | 				this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] ); | ||
|  | 
 | ||
|  | 				// Adds dependencies uniforms to the ShaderMaterial
 | ||
|  | 				const material = variable.material; | ||
|  | 				const uniforms = material.uniforms; | ||
|  | 
 | ||
|  | 				if ( variable.dependencies !== null ) { | ||
|  | 
 | ||
|  | 					for ( let d = 0; d < variable.dependencies.length; d ++ ) { | ||
|  | 
 | ||
|  | 						const depVar = variable.dependencies[ d ]; | ||
|  | 
 | ||
|  | 						if ( depVar.name !== variable.name ) { | ||
|  | 
 | ||
|  | 							// Checks if variable exists
 | ||
|  | 							let found = false; | ||
|  | 
 | ||
|  | 							for ( let j = 0; j < this.variables.length; j ++ ) { | ||
|  | 
 | ||
|  | 								if ( depVar.name === this.variables[ j ].name ) { | ||
|  | 
 | ||
|  | 									found = true; | ||
|  | 									break; | ||
|  | 
 | ||
|  | 								} | ||
|  | 
 | ||
|  | 							} | ||
|  | 
 | ||
|  | 							if ( ! found ) { | ||
|  | 
 | ||
|  | 								return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name; | ||
|  | 
 | ||
|  | 							} | ||
|  | 
 | ||
|  | 						} | ||
|  | 
 | ||
|  | 						uniforms[ depVar.name ] = { value: null }; | ||
|  | 
 | ||
|  | 						material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader; | ||
|  | 
 | ||
|  | 					} | ||
|  | 
 | ||
|  | 				} | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 			this.currentTextureIndex = 0; | ||
|  | 
 | ||
|  | 			return null; | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		this.compute = function () { | ||
|  | 
 | ||
|  | 			const currentTextureIndex = this.currentTextureIndex; | ||
|  | 			const nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0; | ||
|  | 
 | ||
|  | 			for ( let i = 0, il = this.variables.length; i < il; i ++ ) { | ||
|  | 
 | ||
|  | 				const variable = this.variables[ i ]; | ||
|  | 
 | ||
|  | 				// Sets texture dependencies uniforms
 | ||
|  | 				if ( variable.dependencies !== null ) { | ||
|  | 
 | ||
|  | 					const uniforms = variable.material.uniforms; | ||
|  | 
 | ||
|  | 					for ( let d = 0, dl = variable.dependencies.length; d < dl; d ++ ) { | ||
|  | 
 | ||
|  | 						const depVar = variable.dependencies[ d ]; | ||
|  | 
 | ||
|  | 						uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture; | ||
|  | 
 | ||
|  | 					} | ||
|  | 
 | ||
|  | 				} | ||
|  | 
 | ||
|  | 				// Performs the computation for this variable
 | ||
|  | 				this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] ); | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 			this.currentTextureIndex = nextTextureIndex; | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		this.getCurrentRenderTarget = function ( variable ) { | ||
|  | 
 | ||
|  | 			return variable.renderTargets[ this.currentTextureIndex ]; | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		this.getAlternateRenderTarget = function ( variable ) { | ||
|  | 
 | ||
|  | 			return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ]; | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		this.dispose = function () { | ||
|  | 
 | ||
|  | 			mesh.geometry.dispose(); | ||
|  | 			mesh.material.dispose(); | ||
|  | 
 | ||
|  | 			const variables = this.variables; | ||
|  | 
 | ||
|  | 			for ( let i = 0; i < variables.length; i ++ ) { | ||
|  | 
 | ||
|  | 				const variable = variables[ i ]; | ||
|  | 
 | ||
|  | 				if ( variable.initialValueTexture ) variable.initialValueTexture.dispose(); | ||
|  | 
 | ||
|  | 				const renderTargets = variable.renderTargets; | ||
|  | 
 | ||
|  | 				for ( let j = 0; j < renderTargets.length; j ++ ) { | ||
|  | 
 | ||
|  | 					const renderTarget = renderTargets[ j ]; | ||
|  | 					renderTarget.dispose(); | ||
|  | 
 | ||
|  | 				} | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		function addResolutionDefine( materialShader ) { | ||
|  | 
 | ||
|  | 			materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )'; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		this.addResolutionDefine = addResolutionDefine; | ||
|  | 
 | ||
|  | 
 | ||
|  | 		// The following functions can be used to compute things manually
 | ||
|  | 
 | ||
|  | 		function createShaderMaterial( computeFragmentShader, uniforms ) { | ||
|  | 
 | ||
|  | 			uniforms = uniforms || {}; | ||
|  | 
 | ||
|  | 			const material = new ShaderMaterial( { | ||
|  | 				name: 'GPUComputationShader', | ||
|  | 				uniforms: uniforms, | ||
|  | 				vertexShader: getPassThroughVertexShader(), | ||
|  | 				fragmentShader: computeFragmentShader | ||
|  | 			} ); | ||
|  | 
 | ||
|  | 			addResolutionDefine( material ); | ||
|  | 
 | ||
|  | 			return material; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		this.createShaderMaterial = createShaderMaterial; | ||
|  | 
 | ||
|  | 		this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) { | ||
|  | 
 | ||
|  | 			sizeXTexture = sizeXTexture || sizeX; | ||
|  | 			sizeYTexture = sizeYTexture || sizeY; | ||
|  | 
 | ||
|  | 			wrapS = wrapS || ClampToEdgeWrapping; | ||
|  | 			wrapT = wrapT || ClampToEdgeWrapping; | ||
|  | 
 | ||
|  | 			minFilter = minFilter || NearestFilter; | ||
|  | 			magFilter = magFilter || NearestFilter; | ||
|  | 
 | ||
|  | 			const renderTarget = new WebGLRenderTarget( sizeXTexture, sizeYTexture, { | ||
|  | 				wrapS: wrapS, | ||
|  | 				wrapT: wrapT, | ||
|  | 				minFilter: minFilter, | ||
|  | 				magFilter: magFilter, | ||
|  | 				format: RGBAFormat, | ||
|  | 				type: dataType, | ||
|  | 				depthBuffer: false | ||
|  | 			} ); | ||
|  | 
 | ||
|  | 			return renderTarget; | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		this.createTexture = function () { | ||
|  | 
 | ||
|  | 			const data = new Float32Array( sizeX * sizeY * 4 ); | ||
|  | 			const texture = new DataTexture( data, sizeX, sizeY, RGBAFormat, FloatType ); | ||
|  | 			texture.needsUpdate = true; | ||
|  | 			return texture; | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		this.renderTexture = function ( input, output ) { | ||
|  | 
 | ||
|  | 			// Takes a texture, and render out in rendertarget
 | ||
|  | 			// input = Texture
 | ||
|  | 			// output = RenderTarget
 | ||
|  | 
 | ||
|  | 			passThruUniforms.passThruTexture.value = input; | ||
|  | 
 | ||
|  | 			this.doRenderTarget( passThruShader, output ); | ||
|  | 
 | ||
|  | 			passThruUniforms.passThruTexture.value = null; | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		this.doRenderTarget = function ( material, output ) { | ||
|  | 
 | ||
|  | 			const currentRenderTarget = renderer.getRenderTarget(); | ||
|  | 
 | ||
|  | 			const currentXrEnabled = renderer.xr.enabled; | ||
|  | 			const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate; | ||
|  | 
 | ||
|  | 			renderer.xr.enabled = false; // Avoid camera modification
 | ||
|  | 			renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows
 | ||
|  | 			mesh.material = material; | ||
|  | 			renderer.setRenderTarget( output ); | ||
|  | 			renderer.render( scene, camera ); | ||
|  | 			mesh.material = passThruShader; | ||
|  | 
 | ||
|  | 			renderer.xr.enabled = currentXrEnabled; | ||
|  | 			renderer.shadowMap.autoUpdate = currentShadowAutoUpdate; | ||
|  | 
 | ||
|  | 			renderer.setRenderTarget( currentRenderTarget ); | ||
|  | 
 | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		// Shaders
 | ||
|  | 
 | ||
|  | 		function getPassThroughVertexShader() { | ||
|  | 
 | ||
|  | 			return	'void main()	{\n' + | ||
|  | 					'\n' + | ||
|  | 					'	gl_Position = vec4( position, 1.0 );\n' + | ||
|  | 					'\n' + | ||
|  | 					'}\n'; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		function getPassThroughFragmentShader() { | ||
|  | 
 | ||
|  | 			return	'uniform sampler2D passThruTexture;\n' + | ||
|  | 					'\n' + | ||
|  | 					'void main() {\n' + | ||
|  | 					'\n' + | ||
|  | 					'	vec2 uv = gl_FragCoord.xy / resolution.xy;\n' + | ||
|  | 					'\n' + | ||
|  | 					'	gl_FragColor = texture2D( passThruTexture, uv );\n' + | ||
|  | 					'\n' + | ||
|  | 					'}\n'; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | export { GPUComputationRenderer }; |