425 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			425 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
|  | import { | ||
|  | 	DataTexture, | ||
|  | 	Matrix4, | ||
|  | 	RepeatWrapping, | ||
|  | 	Vector2, | ||
|  | 	Vector3, | ||
|  | } from 'three'; | ||
|  | 
 | ||
|  | /** | ||
|  |  * References: | ||
|  |  * - implemented algorithm - GTAO | ||
|  |  *   - https://iryoku.com/downloads/Practical-Realtime-Strategies-for-Accurate-Indirect-Occlusion.pdf
 | ||
|  |  *   - https://github.com/Patapom/GodComplex/blob/master/Tests/TestHBIL/2018%20Mayaux%20-%20Horizon-Based%20Indirect%20Lighting%20(HBIL).pdf
 | ||
|  |  * | ||
|  |  * - other AO algorithms that are not implemented here: | ||
|  |  *   - Screen Space Ambient Occlusion (SSAO), see also SSAOShader.js | ||
|  |  *	 - http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
 | ||
|  |  *	 - https://learnopengl.com/Advanced-Lighting/SSAO
 | ||
|  |  *	 - https://creativecoding.soe.ucsc.edu/courses/cmpm164/_schedule/AmbientOcclusion.pdf
 | ||
|  |  *	 - https://drive.google.com/file/d/1SyagcEVplIm2KkRD3WQYSO9O0Iyi1hfy/edit
 | ||
|  |  *   - Scalable Ambient Occlusion (SAO), see also SAOShader.js | ||
|  |  *	 - https://casual-effects.com/research/McGuire2012SAO/index.html
 | ||
|  |  *	   - https://research.nvidia.com/sites/default/files/pubs/2012-06_Scalable-Ambient-Obscurance/McGuire12SAO.pdf
 | ||
|  |  *   - N8HO | ||
|  |  *	 - https://github.com/N8python/n8ao
 | ||
|  |  *   - Horizon Based Ambient Occlusion (HBAO) | ||
|  |  *	 - http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.577.2286&rep=rep1&type=pdf
 | ||
|  |  *	 - https://www.derschmale.com/2013/12/20/an-alternative-implementation-for-hbao-2/
 | ||
|  |  * | ||
|  |  * - further reading | ||
|  |  * 	 - https://ceur-ws.org/Vol-3027/paper5.pdf
 | ||
|  |  *   - https://www.comp.nus.edu.sg/~lowkl/publications/mssao_visual_computer_2012.pdf
 | ||
|  |  *   - https://web.ics.purdue.edu/~tmcgraw/papers/mcgraw-ao-2008.pdf
 | ||
|  |  *   - https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
 | ||
|  |  *   - https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.390.2463&rep=rep1&type=pdf
 | ||
|  |  *   - https://www.intel.com/content/www/us/en/developer/articles/technical/adaptive-screen-space-ambient-occlusion.html
 | ||
|  |  */ | ||
|  | 
 | ||
|  | const GTAOShader = { | ||
|  | 
 | ||
|  | 	name: 'GTAOShader', | ||
|  | 
 | ||
|  | 	defines: { | ||
|  | 		PERSPECTIVE_CAMERA: 1, | ||
|  | 		SAMPLES: 16, | ||
|  | 		NORMAL_VECTOR_TYPE: 1, | ||
|  | 		DEPTH_SWIZZLING: 'x', | ||
|  | 		SCREEN_SPACE_RADIUS: 0, | ||
|  | 		SCREEN_SPACE_RADIUS_SCALE: 100.0, | ||
|  | 		SCENE_CLIP_BOX: 0, | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	uniforms: { | ||
|  | 		tNormal: { value: null }, | ||
|  | 		tDepth: { value: null }, | ||
|  | 		tNoise: { value: null }, | ||
|  | 		resolution: { value: new Vector2() }, | ||
|  | 		cameraNear: { value: null }, | ||
|  | 		cameraFar: { value: null }, | ||
|  | 		cameraProjectionMatrix: { value: new Matrix4() }, | ||
|  | 		cameraProjectionMatrixInverse: { value: new Matrix4() }, | ||
|  | 		cameraWorldMatrix: { value: new Matrix4() }, | ||
|  | 		radius: { value: 0.25 }, | ||
|  | 		distanceExponent: { value: 1. }, | ||
|  | 		thickness: { value: 1. }, | ||
|  | 		distanceFallOff: { value: 1. }, | ||
|  | 		scale: { value: 1. }, | ||
|  | 		sceneBoxMin: { value: new Vector3( - 1, - 1, - 1 ) }, | ||
|  | 		sceneBoxMax: { value: new Vector3( 1, 1, 1 ) }, | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	vertexShader: /* glsl */`
 | ||
|  | 
 | ||
|  | 		varying vec2 vUv; | ||
|  | 
 | ||
|  | 		void main() { | ||
|  | 			vUv = uv; | ||
|  | 			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); | ||
|  | 		}`,
 | ||
|  | 
 | ||
|  | 	fragmentShader: /* glsl */`
 | ||
|  | 		varying vec2 vUv; | ||
|  | 		uniform highp sampler2D tNormal; | ||
|  | 		uniform highp sampler2D tDepth; | ||
|  | 		uniform sampler2D tNoise; | ||
|  | 		uniform vec2 resolution; | ||
|  | 		uniform float cameraNear; | ||
|  | 		uniform float cameraFar; | ||
|  | 		uniform mat4 cameraProjectionMatrix; | ||
|  | 		uniform mat4 cameraProjectionMatrixInverse;		 | ||
|  | 		uniform mat4 cameraWorldMatrix; | ||
|  | 		uniform float radius; | ||
|  | 		uniform float distanceExponent; | ||
|  | 		uniform float thickness; | ||
|  | 		uniform float distanceFallOff; | ||
|  | 		uniform float scale; | ||
|  | 		#if SCENE_CLIP_BOX == 1 | ||
|  | 			uniform vec3 sceneBoxMin; | ||
|  | 			uniform vec3 sceneBoxMax; | ||
|  | 		#endif | ||
|  | 		 | ||
|  | 		#include <common> | ||
|  | 		#include <packing> | ||
|  | 
 | ||
|  | 		#ifndef FRAGMENT_OUTPUT | ||
|  | 		#define FRAGMENT_OUTPUT vec4(vec3(ao), 1.) | ||
|  | 		#endif | ||
|  | 
 | ||
|  | 		vec3 getViewPosition(const in vec2 screenPosition, const in float depth) { | ||
|  | 			vec4 clipSpacePosition = vec4(vec3(screenPosition, depth) * 2.0 - 1.0, 1.0); | ||
|  | 			vec4 viewSpacePosition = cameraProjectionMatrixInverse * clipSpacePosition; | ||
|  | 			return viewSpacePosition.xyz / viewSpacePosition.w; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		float getDepth(const vec2 uv) {   | ||
|  | 			return textureLod(tDepth, uv.xy, 0.0).DEPTH_SWIZZLING; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		float fetchDepth(const ivec2 uv) {    | ||
|  | 			return texelFetch(tDepth, uv.xy, 0).DEPTH_SWIZZLING; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		float getViewZ(const in float depth) { | ||
|  | 			#if PERSPECTIVE_CAMERA == 1 | ||
|  | 				return perspectiveDepthToViewZ(depth, cameraNear, cameraFar); | ||
|  | 			#else | ||
|  | 				return orthographicDepthToViewZ(depth, cameraNear, cameraFar); | ||
|  | 			#endif | ||
|  | 		} | ||
|  | 
 | ||
|  | 		vec3 computeNormalFromDepth(const vec2 uv) { | ||
|  | 			vec2 size = vec2(textureSize(tDepth, 0)); | ||
|  | 			ivec2 p = ivec2(uv * size); | ||
|  | 			float c0 = fetchDepth(p); | ||
|  | 			float l2 = fetchDepth(p - ivec2(2, 0)); | ||
|  | 			float l1 = fetchDepth(p - ivec2(1, 0)); | ||
|  | 			float r1 = fetchDepth(p + ivec2(1, 0)); | ||
|  | 			float r2 = fetchDepth(p + ivec2(2, 0)); | ||
|  | 			float b2 = fetchDepth(p - ivec2(0, 2)); | ||
|  | 			float b1 = fetchDepth(p - ivec2(0, 1)); | ||
|  | 			float t1 = fetchDepth(p + ivec2(0, 1)); | ||
|  | 			float t2 = fetchDepth(p + ivec2(0, 2)); | ||
|  | 			float dl = abs((2.0 * l1 - l2) - c0); | ||
|  | 			float dr = abs((2.0 * r1 - r2) - c0); | ||
|  | 			float db = abs((2.0 * b1 - b2) - c0); | ||
|  | 			float dt = abs((2.0 * t1 - t2) - c0); | ||
|  | 			vec3 ce = getViewPosition(uv, c0).xyz; | ||
|  | 			vec3 dpdx = (dl < dr) ? ce - getViewPosition((uv - vec2(1.0 / size.x, 0.0)), l1).xyz : -ce + getViewPosition((uv + vec2(1.0 / size.x, 0.0)), r1).xyz; | ||
|  | 			vec3 dpdy = (db < dt) ? ce - getViewPosition((uv - vec2(0.0, 1.0 / size.y)), b1).xyz : -ce + getViewPosition((uv + vec2(0.0, 1.0 / size.y)), t1).xyz; | ||
|  | 			return normalize(cross(dpdx, dpdy)); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		vec3 getViewNormal(const vec2 uv) { | ||
|  | 			#if NORMAL_VECTOR_TYPE == 2 | ||
|  | 				return normalize(textureLod(tNormal, uv, 0.).rgb); | ||
|  | 			#elif NORMAL_VECTOR_TYPE == 1 | ||
|  | 				return unpackRGBToNormal(textureLod(tNormal, uv, 0.).rgb); | ||
|  | 			#else | ||
|  | 				return computeNormalFromDepth(uv); | ||
|  | 			#endif | ||
|  | 		} | ||
|  | 
 | ||
|  | 		vec3 getSceneUvAndDepth(vec3 sampleViewPos) { | ||
|  | 			vec4 sampleClipPos = cameraProjectionMatrix * vec4(sampleViewPos, 1.); | ||
|  | 			vec2 sampleUv = sampleClipPos.xy / sampleClipPos.w * 0.5 + 0.5; | ||
|  | 			float sampleSceneDepth = getDepth(sampleUv); | ||
|  | 			return vec3(sampleUv, sampleSceneDepth); | ||
|  | 		} | ||
|  | 		 | ||
|  | 		void main() { | ||
|  | 			float depth = getDepth(vUv.xy); | ||
|  | 			if (depth >= 1.0) { | ||
|  | 				discard; | ||
|  | 				return; | ||
|  | 			} | ||
|  | 			vec3 viewPos = getViewPosition(vUv, depth); | ||
|  | 			vec3 viewNormal = getViewNormal(vUv); | ||
|  | 
 | ||
|  | 			float radiusToUse = radius; | ||
|  | 			float distanceFalloffToUse = thickness; | ||
|  | 			#if SCREEN_SPACE_RADIUS == 1 | ||
|  | 				float radiusScale = getViewPosition(vec2(0.5 + float(SCREEN_SPACE_RADIUS_SCALE) / resolution.x, 0.0), depth).x; | ||
|  | 				radiusToUse *= radiusScale; | ||
|  | 				distanceFalloffToUse *= radiusScale; | ||
|  | 			#endif | ||
|  | 
 | ||
|  | 			#if SCENE_CLIP_BOX == 1 | ||
|  | 				vec3 worldPos = (cameraWorldMatrix * vec4(viewPos, 1.0)).xyz; | ||
|  | 				float boxDistance = length(max(vec3(0.0), max(sceneBoxMin - worldPos, worldPos - sceneBoxMax))); | ||
|  | 				if (boxDistance > radiusToUse) { | ||
|  | 					discard; | ||
|  | 					return; | ||
|  | 				} | ||
|  | 			#endif | ||
|  | 			 | ||
|  | 			vec2 noiseResolution = vec2(textureSize(tNoise, 0)); | ||
|  | 			vec2 noiseUv = vUv * resolution / noiseResolution; | ||
|  | 			vec4 noiseTexel = textureLod(tNoise, noiseUv, 0.0); | ||
|  | 			vec3 randomVec = noiseTexel.xyz * 2.0 - 1.0; | ||
|  | 			vec3 tangent = normalize(vec3(randomVec.xy, 0.)); | ||
|  | 			vec3 bitangent = vec3(-tangent.y, tangent.x, 0.); | ||
|  | 			mat3 kernelMatrix = mat3(tangent, bitangent, vec3(0., 0., 1.)); | ||
|  | 
 | ||
|  | 			const int DIRECTIONS = SAMPLES < 30 ? 3 : 5; | ||
|  | 			const int STEPS = (SAMPLES + DIRECTIONS - 1) / DIRECTIONS; | ||
|  | 			float ao = 0.0, totalWeight = 0.0; | ||
|  | 			for (int i = 0; i < DIRECTIONS; ++i) { | ||
|  | 				 | ||
|  | 				float angle = float(i) / float(DIRECTIONS) * PI; | ||
|  | 				vec4 sampleDir = vec4(cos(angle), sin(angle), 0., 0.5 + 0.5 * noiseTexel.w);  | ||
|  | 				sampleDir.xyz = normalize(kernelMatrix * sampleDir.xyz); | ||
|  | 
 | ||
|  | 				vec3 viewDir = normalize(-viewPos.xyz); | ||
|  | 				vec3 sliceBitangent = normalize(cross(sampleDir.xyz, viewDir)); | ||
|  | 				vec3 sliceTangent = cross(sliceBitangent, viewDir); | ||
|  | 				vec3 normalInSlice = normalize(viewNormal - sliceBitangent * dot(viewNormal, sliceBitangent)); | ||
|  | 				 | ||
|  | 				vec3 tangentToNormalInSlice = cross(normalInSlice, sliceBitangent); | ||
|  | 				vec2 cosHorizons = vec2(dot(viewDir, tangentToNormalInSlice), dot(viewDir, -tangentToNormalInSlice)); | ||
|  | 				 | ||
|  | 				for (int j = 0; j < STEPS; ++j) { | ||
|  | 					vec3 sampleViewOffset = sampleDir.xyz * radiusToUse * sampleDir.w * pow(float(j + 1) / float(STEPS), distanceExponent);	 | ||
|  | 
 | ||
|  | 					vec3 sampleSceneUvDepth = getSceneUvAndDepth(viewPos + sampleViewOffset); | ||
|  | 					vec3 sampleSceneViewPos = getViewPosition(sampleSceneUvDepth.xy, sampleSceneUvDepth.z); | ||
|  | 					vec3 viewDelta = sampleSceneViewPos - viewPos; | ||
|  | 					if (abs(viewDelta.z) < thickness) { | ||
|  | 						float sampleCosHorizon = dot(viewDir, normalize(viewDelta)); | ||
|  | 						cosHorizons.x += max(0., (sampleCosHorizon - cosHorizons.x) * mix(1., 2. / float(j + 2), distanceFallOff)); | ||
|  | 					}		 | ||
|  | 
 | ||
|  | 					sampleSceneUvDepth = getSceneUvAndDepth(viewPos - sampleViewOffset); | ||
|  | 					sampleSceneViewPos = getViewPosition(sampleSceneUvDepth.xy, sampleSceneUvDepth.z); | ||
|  | 					viewDelta = sampleSceneViewPos - viewPos; | ||
|  | 					if (abs(viewDelta.z) < thickness) { | ||
|  | 						float sampleCosHorizon = dot(viewDir, normalize(viewDelta)); | ||
|  | 						cosHorizons.y += max(0., (sampleCosHorizon - cosHorizons.y) * mix(1., 2. / float(j + 2), distanceFallOff)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 
 | ||
|  | 				vec2 sinHorizons = sqrt(1. - cosHorizons * cosHorizons); | ||
|  | 				float nx = dot(normalInSlice, sliceTangent); | ||
|  | 				float ny = dot(normalInSlice, viewDir); | ||
|  | 				float nxb = 1. / 2. * (acos(cosHorizons.y) - acos(cosHorizons.x) + sinHorizons.x * cosHorizons.x - sinHorizons.y * cosHorizons.y); | ||
|  | 				float nyb = 1. / 2. * (2. - cosHorizons.x * cosHorizons.x - cosHorizons.y * cosHorizons.y); | ||
|  | 				float occlusion = nx * nxb + ny * nyb; | ||
|  | 				ao += occlusion; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			ao = clamp(ao / float(DIRECTIONS), 0., 1.);		 | ||
|  | 		#if SCENE_CLIP_BOX == 1 | ||
|  | 			ao = mix(ao, 1., smoothstep(0., radiusToUse, boxDistance)); | ||
|  | 		#endif | ||
|  | 			ao = pow(ao, scale); | ||
|  | 
 | ||
|  | 			gl_FragColor = FRAGMENT_OUTPUT; | ||
|  | 		}`
 | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | const GTAODepthShader = { | ||
|  | 
 | ||
|  | 	name: 'GTAODepthShader', | ||
|  | 
 | ||
|  | 	defines: { | ||
|  | 		PERSPECTIVE_CAMERA: 1 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	uniforms: { | ||
|  | 		tDepth: { value: null }, | ||
|  | 		cameraNear: { value: null }, | ||
|  | 		cameraFar: { value: null }, | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	vertexShader: /* glsl */`
 | ||
|  | 		varying vec2 vUv; | ||
|  | 
 | ||
|  | 		void main() { | ||
|  | 			vUv = uv; | ||
|  | 			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); | ||
|  | 		}`,
 | ||
|  | 
 | ||
|  | 	fragmentShader: /* glsl */`
 | ||
|  | 		uniform sampler2D tDepth; | ||
|  | 		uniform float cameraNear; | ||
|  | 		uniform float cameraFar; | ||
|  | 		varying vec2 vUv; | ||
|  | 
 | ||
|  | 		#include <packing> | ||
|  | 
 | ||
|  | 		float getLinearDepth( const in vec2 screenPosition ) { | ||
|  | 			#if PERSPECTIVE_CAMERA == 1 | ||
|  | 				float fragCoordZ = texture2D( tDepth, screenPosition ).x; | ||
|  | 				float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar ); | ||
|  | 				return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar ); | ||
|  | 			#else | ||
|  | 				return texture2D( tDepth, screenPosition ).x; | ||
|  | 			#endif | ||
|  | 		} | ||
|  | 
 | ||
|  | 		void main() { | ||
|  | 			float depth = getLinearDepth( vUv ); | ||
|  | 			gl_FragColor = vec4( vec3( 1.0 - depth ), 1.0 ); | ||
|  | 
 | ||
|  | 		}`
 | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | const GTAOBlendShader = { | ||
|  | 
 | ||
|  | 	name: 'GTAOBlendShader', | ||
|  | 
 | ||
|  | 	uniforms: { | ||
|  | 		tDiffuse: { value: null }, | ||
|  | 		intensity: { value: 1.0 } | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	vertexShader: /* glsl */`
 | ||
|  | 		varying vec2 vUv; | ||
|  | 
 | ||
|  | 		void main() { | ||
|  | 			vUv = uv; | ||
|  | 			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); | ||
|  | 		}`,
 | ||
|  | 
 | ||
|  | 	fragmentShader: /* glsl */`
 | ||
|  | 		uniform float intensity; | ||
|  | 		uniform sampler2D tDiffuse; | ||
|  | 		varying vec2 vUv; | ||
|  | 
 | ||
|  | 		void main() { | ||
|  | 			vec4 texel = texture2D( tDiffuse, vUv ); | ||
|  | 			gl_FragColor = vec4(mix(vec3(1.), texel.rgb, intensity), texel.a); | ||
|  | 		}`
 | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | function generateMagicSquareNoise( size = 5 ) { | ||
|  | 
 | ||
|  | 	const noiseSize = Math.floor( size ) % 2 === 0 ? Math.floor( size ) + 1 : Math.floor( size ); | ||
|  | 	const magicSquare = generateMagicSquare( noiseSize ); | ||
|  | 	const noiseSquareSize = magicSquare.length; | ||
|  | 	const data = new Uint8Array( noiseSquareSize * 4 ); | ||
|  | 
 | ||
|  | 	for ( let inx = 0; inx < noiseSquareSize; ++ inx ) { | ||
|  | 
 | ||
|  | 		const iAng = magicSquare[ inx ]; | ||
|  | 		const angle = ( 2 * Math.PI * iAng ) / noiseSquareSize; | ||
|  | 		const randomVec = new Vector3( | ||
|  | 			Math.cos( angle ), | ||
|  | 			Math.sin( angle ), | ||
|  | 			0 | ||
|  | 		).normalize(); | ||
|  | 		data[ inx * 4 ] = ( randomVec.x * 0.5 + 0.5 ) * 255; | ||
|  | 		data[ inx * 4 + 1 ] = ( randomVec.y * 0.5 + 0.5 ) * 255; | ||
|  | 		data[ inx * 4 + 2 ] = 127; | ||
|  | 		data[ inx * 4 + 3 ] = 255; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const noiseTexture = new DataTexture( data, noiseSize, noiseSize ); | ||
|  | 	noiseTexture.wrapS = RepeatWrapping; | ||
|  | 	noiseTexture.wrapT = RepeatWrapping; | ||
|  | 	noiseTexture.needsUpdate = true; | ||
|  | 
 | ||
|  | 	return noiseTexture; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | function generateMagicSquare( size ) { | ||
|  | 
 | ||
|  | 	const noiseSize = Math.floor( size ) % 2 === 0 ? Math.floor( size ) + 1 : Math.floor( size ); | ||
|  | 	const noiseSquareSize = noiseSize * noiseSize; | ||
|  | 	const magicSquare = Array( noiseSquareSize ).fill( 0 ); | ||
|  | 	let i = Math.floor( noiseSize / 2 ); | ||
|  | 	let j = noiseSize - 1; | ||
|  | 
 | ||
|  | 	for ( let num = 1; num <= noiseSquareSize; ) { | ||
|  | 
 | ||
|  | 		if ( i === - 1 && j === noiseSize ) { | ||
|  | 
 | ||
|  | 			j = noiseSize - 2; | ||
|  | 			i = 0; | ||
|  | 
 | ||
|  | 		} else { | ||
|  | 
 | ||
|  | 			if ( j === noiseSize ) { | ||
|  | 
 | ||
|  | 				j = 0; | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 			if ( i < 0 ) { | ||
|  | 
 | ||
|  | 				i = noiseSize - 1; | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if ( magicSquare[ i * noiseSize + j ] !== 0 ) { | ||
|  | 
 | ||
|  | 			j -= 2; | ||
|  | 			i ++; | ||
|  | 			continue; | ||
|  | 
 | ||
|  | 		} else { | ||
|  | 
 | ||
|  | 			magicSquare[ i * noiseSize + j ] = num ++; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		j ++; | ||
|  | 		i --; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return magicSquare; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | export { generateMagicSquareNoise, GTAOShader, GTAODepthShader, GTAOBlendShader }; |