220 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			220 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
|  | import { | ||
|  | 	BackSide, | ||
|  | 	BoxGeometry, | ||
|  | 	Mesh, | ||
|  | 	ShaderMaterial, | ||
|  | 	UniformsUtils, | ||
|  | 	Vector3 | ||
|  | } from 'three'; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Based on "A Practical Analytic Model for Daylight" | ||
|  |  * aka The Preetham Model, the de facto standard analytic skydome model | ||
|  |  * https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight
 | ||
|  |  * | ||
|  |  * First implemented by Simon Wallner | ||
|  |  * http://simonwallner.at/project/atmospheric-scattering/
 | ||
|  |  * | ||
|  |  * Improved by Martin Upitis | ||
|  |  * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
 | ||
|  |  * | ||
|  |  * Three.js integration by zz85 http://twitter.com/blurspline
 | ||
|  | */ | ||
|  | 
 | ||
|  | class Sky extends Mesh { | ||
|  | 
 | ||
|  | 	constructor() { | ||
|  | 
 | ||
|  | 		const shader = Sky.SkyShader; | ||
|  | 
 | ||
|  | 		const material = new ShaderMaterial( { | ||
|  | 			name: shader.name, | ||
|  | 			uniforms: UniformsUtils.clone( shader.uniforms ), | ||
|  | 			vertexShader: shader.vertexShader, | ||
|  | 			fragmentShader: shader.fragmentShader, | ||
|  | 			side: BackSide, | ||
|  | 			depthWrite: false | ||
|  | 		} ); | ||
|  | 
 | ||
|  | 		super( new BoxGeometry( 1, 1, 1 ), material ); | ||
|  | 
 | ||
|  | 		this.isSky = true; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | Sky.SkyShader = { | ||
|  | 
 | ||
|  | 	name: 'SkyShader', | ||
|  | 
 | ||
|  | 	uniforms: { | ||
|  | 		'turbidity': { value: 2 }, | ||
|  | 		'rayleigh': { value: 1 }, | ||
|  | 		'mieCoefficient': { value: 0.005 }, | ||
|  | 		'mieDirectionalG': { value: 0.8 }, | ||
|  | 		'sunPosition': { value: new Vector3() }, | ||
|  | 		'up': { value: new Vector3( 0, 1, 0 ) } | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	vertexShader: /* glsl */`
 | ||
|  | 		uniform vec3 sunPosition; | ||
|  | 		uniform float rayleigh; | ||
|  | 		uniform float turbidity; | ||
|  | 		uniform float mieCoefficient; | ||
|  | 		uniform vec3 up; | ||
|  | 
 | ||
|  | 		varying vec3 vWorldPosition; | ||
|  | 		varying vec3 vSunDirection; | ||
|  | 		varying float vSunfade; | ||
|  | 		varying vec3 vBetaR; | ||
|  | 		varying vec3 vBetaM; | ||
|  | 		varying float vSunE; | ||
|  | 
 | ||
|  | 		// constants for atmospheric scattering
 | ||
|  | 		const float e = 2.71828182845904523536028747135266249775724709369995957; | ||
|  | 		const float pi = 3.141592653589793238462643383279502884197169; | ||
|  | 
 | ||
|  | 		// wavelength of used primaries, according to preetham
 | ||
|  | 		const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 ); | ||
|  | 		// this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
 | ||
|  | 		// (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
 | ||
|  | 		const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 ); | ||
|  | 
 | ||
|  | 		// mie stuff
 | ||
|  | 		// K coefficient for the primaries
 | ||
|  | 		const float v = 4.0; | ||
|  | 		const vec3 K = vec3( 0.686, 0.678, 0.666 ); | ||
|  | 		// MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
 | ||
|  | 		const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 ); | ||
|  | 
 | ||
|  | 		// earth shadow hack
 | ||
|  | 		// cutoffAngle = pi / 1.95;
 | ||
|  | 		const float cutoffAngle = 1.6110731556870734; | ||
|  | 		const float steepness = 1.5; | ||
|  | 		const float EE = 1000.0; | ||
|  | 
 | ||
|  | 		float sunIntensity( float zenithAngleCos ) { | ||
|  | 			zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 ); | ||
|  | 			return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) ); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		vec3 totalMie( float T ) { | ||
|  | 			float c = ( 0.2 * T ) * 10E-18; | ||
|  | 			return 0.434 * c * MieConst; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		void main() { | ||
|  | 
 | ||
|  | 			vec4 worldPosition = modelMatrix * vec4( position, 1.0 ); | ||
|  | 			vWorldPosition = worldPosition.xyz; | ||
|  | 
 | ||
|  | 			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); | ||
|  | 			gl_Position.z = gl_Position.w; // set z to camera.far
 | ||
|  | 
 | ||
|  | 			vSunDirection = normalize( sunPosition ); | ||
|  | 
 | ||
|  | 			vSunE = sunIntensity( dot( vSunDirection, up ) ); | ||
|  | 
 | ||
|  | 			vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 ); | ||
|  | 
 | ||
|  | 			float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) ); | ||
|  | 
 | ||
|  | 			// extinction (absorbtion + out scattering)
 | ||
|  | 			// rayleigh coefficients
 | ||
|  | 			vBetaR = totalRayleigh * rayleighCoefficient; | ||
|  | 
 | ||
|  | 			// mie coefficients
 | ||
|  | 			vBetaM = totalMie( turbidity ) * mieCoefficient; | ||
|  | 
 | ||
|  | 		}`,
 | ||
|  | 
 | ||
|  | 	fragmentShader: /* glsl */`
 | ||
|  | 		varying vec3 vWorldPosition; | ||
|  | 		varying vec3 vSunDirection; | ||
|  | 		varying float vSunfade; | ||
|  | 		varying vec3 vBetaR; | ||
|  | 		varying vec3 vBetaM; | ||
|  | 		varying float vSunE; | ||
|  | 
 | ||
|  | 		uniform float mieDirectionalG; | ||
|  | 		uniform vec3 up; | ||
|  | 
 | ||
|  | 		// constants for atmospheric scattering
 | ||
|  | 		const float pi = 3.141592653589793238462643383279502884197169; | ||
|  | 
 | ||
|  | 		const float n = 1.0003; // refractive index of air
 | ||
|  | 		const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius)
 | ||
|  | 
 | ||
|  | 		// optical length at zenith for molecules
 | ||
|  | 		const float rayleighZenithLength = 8.4E3; | ||
|  | 		const float mieZenithLength = 1.25E3; | ||
|  | 		// 66 arc seconds -> degrees, and the cosine of that
 | ||
|  | 		const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324; | ||
|  | 
 | ||
|  | 		// 3.0 / ( 16.0 * pi )
 | ||
|  | 		const float THREE_OVER_SIXTEENPI = 0.05968310365946075; | ||
|  | 		// 1.0 / ( 4.0 * pi )
 | ||
|  | 		const float ONE_OVER_FOURPI = 0.07957747154594767; | ||
|  | 
 | ||
|  | 		float rayleighPhase( float cosTheta ) { | ||
|  | 			return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) ); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		float hgPhase( float cosTheta, float g ) { | ||
|  | 			float g2 = pow( g, 2.0 ); | ||
|  | 			float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 ); | ||
|  | 			return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse ); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		void main() { | ||
|  | 
 | ||
|  | 			vec3 direction = normalize( vWorldPosition - cameraPosition ); | ||
|  | 
 | ||
|  | 			// optical length
 | ||
|  | 			// cutoff angle at 90 to avoid singularity in next formula.
 | ||
|  | 			float zenithAngle = acos( max( 0.0, dot( up, direction ) ) ); | ||
|  | 			float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) ); | ||
|  | 			float sR = rayleighZenithLength * inverse; | ||
|  | 			float sM = mieZenithLength * inverse; | ||
|  | 
 | ||
|  | 			// combined extinction factor
 | ||
|  | 			vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) ); | ||
|  | 
 | ||
|  | 			// in scattering
 | ||
|  | 			float cosTheta = dot( direction, vSunDirection ); | ||
|  | 
 | ||
|  | 			float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 ); | ||
|  | 			vec3 betaRTheta = vBetaR * rPhase; | ||
|  | 
 | ||
|  | 			float mPhase = hgPhase( cosTheta, mieDirectionalG ); | ||
|  | 			vec3 betaMTheta = vBetaM * mPhase; | ||
|  | 
 | ||
|  | 			vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) ); | ||
|  | 			Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) ); | ||
|  | 
 | ||
|  | 			// nightsky
 | ||
|  | 			float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]
 | ||
|  | 			float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]
 | ||
|  | 			vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 ); | ||
|  | 			vec3 L0 = vec3( 0.1 ) * Fex; | ||
|  | 
 | ||
|  | 			// composition + solar disc
 | ||
|  | 			float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta ); | ||
|  | 			L0 += ( vSunE * 19000.0 * Fex ) * sundisk; | ||
|  | 
 | ||
|  | 			vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 ); | ||
|  | 
 | ||
|  | 			vec3 retColor = pow( texColor, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) ); | ||
|  | 
 | ||
|  | 			gl_FragColor = vec4( retColor, 1.0 ); | ||
|  | 
 | ||
|  | 			#include <tonemapping_fragment> | ||
|  | 			#include <colorspace_fragment> | ||
|  | 
 | ||
|  | 		}`
 | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | export { Sky }; |