222 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			222 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
|  | import { Vector3 } from 'three'; | ||
|  | 
 | ||
|  | 
 | ||
|  | /** | ||
|  |  * Generates 2D-Coordinates in a very fast way. | ||
|  |  * | ||
|  |  * Based on work by: | ||
|  |  * @link http://www.openprocessing.org/sketch/15493
 | ||
|  |  * | ||
|  |  * @param center     Center of Hilbert curve. | ||
|  |  * @param size       Total width of Hilbert curve. | ||
|  |  * @param iterations Number of subdivisions. | ||
|  |  * @param v0         Corner index -X, -Z. | ||
|  |  * @param v1         Corner index -X, +Z. | ||
|  |  * @param v2         Corner index +X, +Z. | ||
|  |  * @param v3         Corner index +X, -Z. | ||
|  |  */ | ||
|  | function hilbert2D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) { | ||
|  | 
 | ||
|  | 	const half = size / 2; | ||
|  | 
 | ||
|  | 	const vec_s = [ | ||
|  | 		new Vector3( center.x - half, center.y, center.z - half ), | ||
|  | 		new Vector3( center.x - half, center.y, center.z + half ), | ||
|  | 		new Vector3( center.x + half, center.y, center.z + half ), | ||
|  | 		new Vector3( center.x + half, center.y, center.z - half ) | ||
|  | 	]; | ||
|  | 
 | ||
|  | 	const vec = [ | ||
|  | 		vec_s[ v0 ], | ||
|  | 		vec_s[ v1 ], | ||
|  | 		vec_s[ v2 ], | ||
|  | 		vec_s[ v3 ] | ||
|  | 	]; | ||
|  | 
 | ||
|  | 	// Recurse iterations
 | ||
|  | 	if ( 0 <= -- iterations ) { | ||
|  | 
 | ||
|  | 		return [ | ||
|  | 			...hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ), | ||
|  | 			...hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ), | ||
|  | 			...hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ), | ||
|  | 			...hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) | ||
|  | 		]; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Return complete Hilbert Curve.
 | ||
|  | 	return vec; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Generates 3D-Coordinates in a very fast way. | ||
|  |  * | ||
|  |  * Based on work by: | ||
|  |  * @link https://openprocessing.org/user/5654
 | ||
|  |  * | ||
|  |  * @param center     Center of Hilbert curve. | ||
|  |  * @param size       Total width of Hilbert curve. | ||
|  |  * @param iterations Number of subdivisions. | ||
|  |  * @param v0         Corner index -X, +Y, -Z. | ||
|  |  * @param v1         Corner index -X, +Y, +Z. | ||
|  |  * @param v2         Corner index -X, -Y, +Z. | ||
|  |  * @param v3         Corner index -X, -Y, -Z. | ||
|  |  * @param v4         Corner index +X, -Y, -Z. | ||
|  |  * @param v5         Corner index +X, -Y, +Z. | ||
|  |  * @param v6         Corner index +X, +Y, +Z. | ||
|  |  * @param v7         Corner index +X, +Y, -Z. | ||
|  |  */ | ||
|  | function hilbert3D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) { | ||
|  | 
 | ||
|  | 	// Default Vars
 | ||
|  | 	const half = size / 2; | ||
|  | 
 | ||
|  | 	const vec_s = [ | ||
|  | 		new Vector3( center.x - half, center.y + half, center.z - half ), | ||
|  | 		new Vector3( center.x - half, center.y + half, center.z + half ), | ||
|  | 		new Vector3( center.x - half, center.y - half, center.z + half ), | ||
|  | 		new Vector3( center.x - half, center.y - half, center.z - half ), | ||
|  | 		new Vector3( center.x + half, center.y - half, center.z - half ), | ||
|  | 		new Vector3( center.x + half, center.y - half, center.z + half ), | ||
|  | 		new Vector3( center.x + half, center.y + half, center.z + half ), | ||
|  | 		new Vector3( center.x + half, center.y + half, center.z - half ) | ||
|  | 	]; | ||
|  | 
 | ||
|  | 	const vec = [ | ||
|  | 		vec_s[ v0 ], | ||
|  | 		vec_s[ v1 ], | ||
|  | 		vec_s[ v2 ], | ||
|  | 		vec_s[ v3 ], | ||
|  | 		vec_s[ v4 ], | ||
|  | 		vec_s[ v5 ], | ||
|  | 		vec_s[ v6 ], | ||
|  | 		vec_s[ v7 ] | ||
|  | 	]; | ||
|  | 
 | ||
|  | 	// Recurse iterations
 | ||
|  | 	if ( -- iterations >= 0 ) { | ||
|  | 
 | ||
|  | 		return [ | ||
|  | 			...hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ), | ||
|  | 			...hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ), | ||
|  | 			...hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ), | ||
|  | 			...hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ), | ||
|  | 			...hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ), | ||
|  | 			...hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ), | ||
|  | 			...hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ), | ||
|  | 			...hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) | ||
|  | 		]; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Return complete Hilbert Curve.
 | ||
|  | 	return vec; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Generates a Gosper curve (lying in the XY plane) | ||
|  |  * | ||
|  |  * https://gist.github.com/nitaku/6521802
 | ||
|  |  * | ||
|  |  * @param size The size of a single gosper island. | ||
|  |  */ | ||
|  | function gosper( size = 1 ) { | ||
|  | 
 | ||
|  | 	function fractalize( config ) { | ||
|  | 
 | ||
|  | 		let output; | ||
|  | 		let input = config.axiom; | ||
|  | 
 | ||
|  | 		for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) { | ||
|  | 
 | ||
|  | 			output = ''; | ||
|  | 
 | ||
|  | 			for ( let j = 0, jl = input.length; j < jl; j ++ ) { | ||
|  | 
 | ||
|  | 				const char = input[ j ]; | ||
|  | 
 | ||
|  | 				if ( char in config.rules ) { | ||
|  | 
 | ||
|  | 					output += config.rules[ char ]; | ||
|  | 
 | ||
|  | 				} else { | ||
|  | 
 | ||
|  | 					output += char; | ||
|  | 
 | ||
|  | 				} | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 			input = output; | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		return output; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	function toPoints( config ) { | ||
|  | 
 | ||
|  | 		let currX = 0, currY = 0; | ||
|  | 		let angle = 0; | ||
|  | 		const path = [ 0, 0, 0 ]; | ||
|  | 		const fractal = config.fractal; | ||
|  | 
 | ||
|  | 		for ( let i = 0, l = fractal.length; i < l; i ++ ) { | ||
|  | 
 | ||
|  | 			const char = fractal[ i ]; | ||
|  | 
 | ||
|  | 			if ( char === '+' ) { | ||
|  | 
 | ||
|  | 				angle += config.angle; | ||
|  | 
 | ||
|  | 			} else if ( char === '-' ) { | ||
|  | 
 | ||
|  | 				angle -= config.angle; | ||
|  | 
 | ||
|  | 			} else if ( char === 'F' ) { | ||
|  | 
 | ||
|  | 				currX += config.size * Math.cos( angle ); | ||
|  | 				currY += - config.size * Math.sin( angle ); | ||
|  | 				path.push( currX, currY, 0 ); | ||
|  | 
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 		} | ||
|  | 
 | ||
|  | 		return path; | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//
 | ||
|  | 
 | ||
|  | 	const gosper = fractalize( { | ||
|  | 		axiom: 'A', | ||
|  | 		steps: 4, | ||
|  | 		rules: { | ||
|  | 			A: 'A+BF++BF-FA--FAFA-BF+', | ||
|  | 			B: '-FA+BFBF++BF+FA--FA-B' | ||
|  | 		} | ||
|  | 	} ); | ||
|  | 
 | ||
|  | 	const points = toPoints( { | ||
|  | 		fractal: gosper, | ||
|  | 		size: size, | ||
|  | 		angle: Math.PI / 3 // 60 degrees
 | ||
|  | 	} ); | ||
|  | 
 | ||
|  | 	return points; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | export { | ||
|  | 	hilbert2D, | ||
|  | 	hilbert3D, | ||
|  | 	gosper, | ||
|  | }; |