最新代码
This commit is contained in:
328
public/sdk/arrow/algorithm.js
Normal file
328
public/sdk/arrow/algorithm.js
Normal file
@ -0,0 +1,328 @@
|
||||
var xp = {
|
||||
version: "1.0.0",
|
||||
createTime: "2018.6.19",
|
||||
author: "xupinhui"
|
||||
}
|
||||
var doubleArrowDefualParam = {
|
||||
type: "doublearrow",
|
||||
headHeightFactor: .25,
|
||||
headWidthFactor: .3,
|
||||
neckHeightFactor: .85,
|
||||
fixPointCount: 4,
|
||||
neckWidthFactor: .15
|
||||
}
|
||||
var tailedAttackArrowDefualParam = {
|
||||
headHeightFactor: .18,
|
||||
headWidthFactor: .3,
|
||||
neckHeightFactor: .85,
|
||||
neckWidthFactor: .15,
|
||||
tailWidthFactor: .1,
|
||||
headTailFactor: .8,
|
||||
swallowTailFactor: 1
|
||||
};
|
||||
var fineArrowDefualParam = {
|
||||
tailWidthFactor: 0.15,
|
||||
neckWidthFactor: 0.20,
|
||||
headWidthFactor: 0.25,
|
||||
headAngle: Math.PI / 8.5,
|
||||
neckAngle: Math.PI / 13
|
||||
};
|
||||
xp.algorithm = {},
|
||||
xp.algorithm.doubleArrow = function (inputPoint) {
|
||||
this.connPoint = null;
|
||||
this.tempPoint4 = null;
|
||||
this.points = inputPoint;
|
||||
var result = {
|
||||
controlPoint: null,
|
||||
polygonalPoint: null
|
||||
};
|
||||
//获取已经点击的坐标数
|
||||
var t = inputPoint.length;
|
||||
if (!(2 > t)) {
|
||||
if (2 == t) return inputPoint;
|
||||
var o = this.points[0], //第一个点
|
||||
e = this.points[1], //第二个点
|
||||
r = this.points[2], //第三个点
|
||||
t = inputPoint.length; //获取已经点击的坐标数
|
||||
//下面的是移动点位后的坐标
|
||||
3 == t ? this.tempPoint4 = xp.algorithm.getTempPoint4(o, e, r) : this.tempPoint4 = this.points[3],
|
||||
3 == t || 4 == t ? this.connPoint = P.PlotUtils.mid(o, e) : this.connPoint = this.points[4];
|
||||
var n, g;
|
||||
P.PlotUtils.isClockWise(o, e, r) ? (n = xp.algorithm.getArrowPoints(o, this.connPoint, this.tempPoint4, !1), g = xp.algorithm.getArrowPoints(this.connPoint, e, r, !0)) : (n = xp.algorithm.getArrowPoints(e, this.connPoint, r, !1), g = xp.algorithm.getArrowPoints(this.connPoint, o, this.tempPoint4, !0));
|
||||
var i = n.length,
|
||||
s = (i - 5) / 2,
|
||||
a = n.slice(0, s),
|
||||
l = n.slice(s, s + 5),
|
||||
u = n.slice(s + 5, i),
|
||||
c = g.slice(0, s),
|
||||
p = g.slice(s, s + 5),
|
||||
h = g.slice(s + 5, i);
|
||||
c = P.PlotUtils.getBezierPoints(c);
|
||||
var d = P.PlotUtils.getBezierPoints(h.concat(a.slice(1)));
|
||||
u = P.PlotUtils.getBezierPoints(u);
|
||||
var f = c.concat(p, d, l, u);
|
||||
var newArray = xp.algorithm.array2Dto1D(f);
|
||||
result.controlPoint = [o, e, r, this.tempPoint4, this.connPoint];
|
||||
result.polygonalPoint = Cesium.Cartesian3.fromDegreesArray(newArray);
|
||||
}
|
||||
|
||||
return result;
|
||||
},
|
||||
xp.algorithm.threeArrow = function (inputPoint) {
|
||||
this.connPoint = null;
|
||||
this.tempPoint4 = null;
|
||||
this.tempPoint5 = null;
|
||||
this.points = inputPoint;
|
||||
var result = {
|
||||
controlPoint: null,
|
||||
polygonalPoint: null
|
||||
};
|
||||
//获取已经点击的坐标数
|
||||
var t = inputPoint.length;
|
||||
if (t >= 2) {
|
||||
if (t == 2) {
|
||||
return inputPoint;
|
||||
}
|
||||
var o = this.points[0], //第一个点
|
||||
e = this.points[1], //第二个点
|
||||
r = this.points[2], //第三个点
|
||||
t = inputPoint.length; //获取已经点击的坐标数
|
||||
//下面的是移动点位后的坐标
|
||||
if (t == 3) {
|
||||
this.tempPoint4 = xp.algorithm.getTempPoint4(o, e, r);
|
||||
this.tempPoint5 = P.PlotUtils.mid(r, this.tempPoint4);
|
||||
} else {
|
||||
this.tempPoint4 = this.points[3];
|
||||
this.tempPoint5 = this.points[4];
|
||||
}
|
||||
if (t < 6) {
|
||||
this.connPoint = P.PlotUtils.mid(o, e);
|
||||
} else {
|
||||
this.connPoint = this.points[5];
|
||||
}
|
||||
var n, g;
|
||||
if (P.PlotUtils.isClockWise(o, e, r)) {
|
||||
n = xp.algorithm.getArrowPoints(o, this.connPoint, this.tempPoint4, !1);
|
||||
g = xp.algorithm.getArrowPoints(this.connPoint, e, r, !0);
|
||||
} else {
|
||||
n = xp.algorithm.getArrowPoints(e, this.connPoint, r, !1);
|
||||
g = xp.algorithm.getArrowPoints(this.connPoint, o, this.tempPoint4, !0);
|
||||
}
|
||||
var i = n.length,
|
||||
s = (i - 5) / 2,
|
||||
a = n.slice(0, s),
|
||||
l = n.slice(s, s + 5),
|
||||
u = n.slice(s + 5, i),
|
||||
c = g.slice(0, s),
|
||||
p = g.slice(s, s + 5),
|
||||
h = g.slice(s + 5, i);
|
||||
c = P.PlotUtils.getBezierPoints(c);
|
||||
var d = P.PlotUtils.getBezierPoints(h.concat(a.slice(1)));
|
||||
u = P.PlotUtils.getBezierPoints(u);
|
||||
var f = c.concat(p, d, l, u);
|
||||
var newArray = xp.algorithm.array2Dto1D(f);
|
||||
result.controlPoint = [o, e, r, this.tempPoint4, this.tempPoint5, this.connPoint];
|
||||
result.polygonalPoint = Cesium.Cartesian3.fromDegreesArray(newArray);
|
||||
}
|
||||
return result;
|
||||
},
|
||||
xp.algorithm.array2Dto1D = function (array) {
|
||||
var newArray = [];
|
||||
array.forEach(function (elt) {
|
||||
newArray.push(elt[0]);
|
||||
newArray.push(elt[1]);
|
||||
});
|
||||
return newArray;
|
||||
},
|
||||
xp.algorithm.getArrowPoints = function (t, o, e, r) {
|
||||
this.type = doubleArrowDefualParam.type,
|
||||
this.headHeightFactor = doubleArrowDefualParam.headHeightFactor,
|
||||
this.headWidthFactor = doubleArrowDefualParam.headWidthFactor,
|
||||
this.neckHeightFactor = doubleArrowDefualParam.neckHeightFactor,
|
||||
this.neckWidthFactor = doubleArrowDefualParam.neckWidthFactor;
|
||||
var n = P.PlotUtils.mid(t, o),
|
||||
g = P.PlotUtils.distance(n, e),
|
||||
i = P.PlotUtils.getThirdPoint(e, n, 0, .3 * g, !0),
|
||||
s = P.PlotUtils.getThirdPoint(e, n, 0, .5 * g, !0);
|
||||
i = P.PlotUtils.getThirdPoint(n, i, P.Constants.HALF_PI, g / 5, r),
|
||||
s = P.PlotUtils.getThirdPoint(n, s, P.Constants.HALF_PI, g / 4, r);
|
||||
var a = [n, i, s, e],
|
||||
l = xp.algorithm.getArrowHeadPoints(a, this.headHeightFactor, this.headWidthFactor, this.neckHeightFactor, this.neckWidthFactor),
|
||||
u = l[0],
|
||||
c = l[4],
|
||||
p = P.PlotUtils.distance(t, o) / P.PlotUtils.getBaseLength(a) / 2,
|
||||
h = xp.algorithm.getArrowBodyPoints(a, u, c, p),
|
||||
d = h.length,
|
||||
f = h.slice(0, d / 2),
|
||||
E = h.slice(d / 2, d);
|
||||
return f.push(u),
|
||||
E.push(c),
|
||||
f = f.reverse(),
|
||||
f.push(o),
|
||||
E = E.reverse(),
|
||||
E.push(t),
|
||||
f.reverse().concat(l, E)
|
||||
},
|
||||
xp.algorithm.getArrowHeadPoints = function (t, o, e) {
|
||||
this.type = doubleArrowDefualParam.type,
|
||||
this.headHeightFactor = doubleArrowDefualParam.headHeightFactor,
|
||||
this.headWidthFactor = doubleArrowDefualParam.headWidthFactor,
|
||||
this.neckHeightFactor = doubleArrowDefualParam.neckHeightFactor,
|
||||
this.neckWidthFactor = doubleArrowDefualParam.neckWidthFactor;
|
||||
var r = P.PlotUtils.getBaseLength(t),
|
||||
n = r * this.headHeightFactor,
|
||||
g = t[t.length - 1],
|
||||
i = (P.PlotUtils.distance(o, e), n * this.headWidthFactor),
|
||||
s = n * this.neckWidthFactor,
|
||||
a = n * this.neckHeightFactor,
|
||||
l = P.PlotUtils.getThirdPoint(t[t.length - 2], g, 0, n, !0),
|
||||
u = P.PlotUtils.getThirdPoint(t[t.length - 2], g, 0, a, !0),
|
||||
c = P.PlotUtils.getThirdPoint(g, l, P.Constants.HALF_PI, i, !1),
|
||||
p = P.PlotUtils.getThirdPoint(g, l, P.Constants.HALF_PI, i, !0),
|
||||
h = P.PlotUtils.getThirdPoint(g, u, P.Constants.HALF_PI, s, !1),
|
||||
d = P.PlotUtils.getThirdPoint(g, u, P.Constants.HALF_PI, s, !0);
|
||||
return [h, c, g, p, d];
|
||||
},
|
||||
xp.algorithm.getArrowBodyPoints = function (t, o, e, r) {
|
||||
for (var n = P.PlotUtils.wholeDistance(t), g = P.PlotUtils.getBaseLength(t), i = g * r, s = P.PlotUtils.distance(o, e), a = (i - s) / 2, l = 0, u = [], c = [], p = 1; p < t.length - 1; p++) {
|
||||
var h = P.PlotUtils.getAngleOfThreePoints(t[p - 1], t[p], t[p + 1]) / 2;
|
||||
l += P.PlotUtils.distance(t[p - 1], t[p]);
|
||||
var d = (i / 2 - l / n * a) / Math.sin(h),
|
||||
f = P.PlotUtils.getThirdPoint(t[p - 1], t[p], Math.PI - h, d, !0),
|
||||
E = P.PlotUtils.getThirdPoint(t[p - 1], t[p], h, d, !1);
|
||||
u.push(f),
|
||||
c.push(E)
|
||||
}
|
||||
return u.concat(c)
|
||||
},
|
||||
xp.algorithm.getTempPoint4 = function (t, o, e) {
|
||||
var r, n, g, i, s = P.PlotUtils.mid(t, o),
|
||||
a = P.PlotUtils.distance(s, e),
|
||||
l = P.PlotUtils.getAngleOfThreePoints(t, s, e);
|
||||
return l < P.Constants.HALF_PI ? (n = a * Math.sin(l), g = a * Math.cos(l), i = P.PlotUtils.getThirdPoint(t, s, P.Constants.HALF_PI, n, !1), r = P.PlotUtils.getThirdPoint(s, i, P.Constants.HALF_PI, g, !0)) : l >= P.Constants.HALF_PI && l < Math.PI ? (n = a * Math.sin(Math.PI - l), g = a * Math.cos(Math.PI - l), i = P.PlotUtils.getThirdPoint(t, s, P.Constants.HALF_PI, n, !1), r = P.PlotUtils.getThirdPoint(s, i, P.Constants.HALF_PI, g, !1)) : l >= Math.PI && l < 1.5 * Math.PI ? (n = a * Math.sin(l - Math.PI), g = a * Math.cos(l - Math.PI), i = P.PlotUtils.getThirdPoint(t, s, P.Constants.HALF_PI, n, !0), r = P.PlotUtils.getThirdPoint(s, i, P.Constants.HALF_PI, g, !0)) : (n = a * Math.sin(2 * Math.PI - l), g = a * Math.cos(2 * Math.PI - l), i = P.PlotUtils.getThirdPoint(t, s, P.Constants.HALF_PI, n, !0), r = P.PlotUtils.getThirdPoint(s, i, P.Constants.HALF_PI, g, !1)),
|
||||
r
|
||||
},
|
||||
xp.algorithm.tailedAttackArrow = function (inputPoint) {
|
||||
inputPoint = xp.algorithm.dereplication(inputPoint);
|
||||
this.tailWidthFactor = tailedAttackArrowDefualParam.tailWidthFactor;
|
||||
this.swallowTailFactor = tailedAttackArrowDefualParam.swallowTailFactor;
|
||||
this.swallowTailPnt = tailedAttackArrowDefualParam.swallowTailPnt;
|
||||
//控制点
|
||||
var result = {
|
||||
controlPoint: null,
|
||||
polygonalPoint: null
|
||||
};
|
||||
result.controlPoint = inputPoint;
|
||||
var t = inputPoint.length;
|
||||
if (!(2 > t)) {
|
||||
if (2 == inputPoint.length) {
|
||||
result.polygonalPoint = inputPoint;
|
||||
return result;
|
||||
}
|
||||
var o = inputPoint,
|
||||
e = o[0],
|
||||
r = o[1];
|
||||
P.PlotUtils.isClockWise(o[0], o[1], o[2]) && (e = o[1], r = o[0]);
|
||||
var n = P.PlotUtils.mid(e, r),
|
||||
g = [n].concat(o.slice(2)),
|
||||
i = xp.algorithm.getAttackArrowHeadPoints(g, e, r, tailedAttackArrowDefualParam),
|
||||
s = i[0],
|
||||
a = i[4],
|
||||
l = P.PlotUtils.distance(e, r),
|
||||
u = P.PlotUtils.getBaseLength(g),
|
||||
c = u * this.tailWidthFactor * this.swallowTailFactor;
|
||||
this.swallowTailPnt = P.PlotUtils.getThirdPoint(g[1], g[0], 0, c, !0);
|
||||
var p = l / u,
|
||||
h = xp.algorithm.getAttackArrowBodyPoints(g, s, a, p),
|
||||
t = h.length,
|
||||
d = [e].concat(h.slice(0, t / 2));
|
||||
d.push(s);
|
||||
var f = [r].concat(h.slice(t / 2, t));
|
||||
var newArray = [];
|
||||
f.push(a),
|
||||
d = P.PlotUtils.getQBSplinePoints(d),
|
||||
f = P.PlotUtils.getQBSplinePoints(f),
|
||||
newArray = xp.algorithm.array2Dto1D(d.concat(i, f.reverse(), [this.swallowTailPnt, d[0]]));
|
||||
result.polygonalPoint = Cesium.Cartesian3.fromDegreesArray(newArray);
|
||||
}
|
||||
return result;
|
||||
},
|
||||
xp.algorithm.getAttackArrowHeadPoints = function (t, o, e, defaultParam) {
|
||||
this.headHeightFactor = defaultParam.headHeightFactor;
|
||||
this.headTailFactor = defaultParam.headTailFactor;
|
||||
this.headWidthFactor = defaultParam.headWidthFactor;
|
||||
this.neckWidthFactor = defaultParam.neckWidthFactor;
|
||||
this.neckHeightFactor = defaultParam.neckHeightFactor;
|
||||
var r = P.PlotUtils.getBaseLength(t),
|
||||
n = r * this.headHeightFactor,
|
||||
g = t[t.length - 1];
|
||||
r = P.PlotUtils.distance(g, t[t.length - 2]);
|
||||
var i = P.PlotUtils.distance(o, e);
|
||||
n > i * this.headTailFactor && (n = i * this.headTailFactor);
|
||||
var s = n * this.headWidthFactor,
|
||||
a = n * this.neckWidthFactor;
|
||||
n = n > r ? r : n;
|
||||
var l = n * this.neckHeightFactor,
|
||||
u = P.PlotUtils.getThirdPoint(t[t.length - 2], g, 0, n, !0),
|
||||
c = P.PlotUtils.getThirdPoint(t[t.length - 2], g, 0, l, !0),
|
||||
p = P.PlotUtils.getThirdPoint(g, u, P.Constants.HALF_PI, s, !1),
|
||||
h = P.PlotUtils.getThirdPoint(g, u, P.Constants.HALF_PI, s, !0),
|
||||
d = P.PlotUtils.getThirdPoint(g, c, P.Constants.HALF_PI, a, !1),
|
||||
f = P.PlotUtils.getThirdPoint(g, c, P.Constants.HALF_PI, a, !0);
|
||||
return [d, p, g, h, f]
|
||||
},
|
||||
xp.algorithm.getAttackArrowBodyPoints = function (t, o, e, r) {
|
||||
for (var n = P.PlotUtils.wholeDistance(t), g = P.PlotUtils.getBaseLength(t), i = g * r, s = P.PlotUtils.distance(o, e), a = (i - s) / 2, l = 0, u = [], c = [], p = 1; p < t.length - 1; p++) {
|
||||
var h = P.PlotUtils.getAngleOfThreePoints(t[p - 1], t[p], t[p + 1]) / 2;
|
||||
l += P.PlotUtils.distance(t[p - 1], t[p]);
|
||||
var d = (i / 2 - l / n * a) / Math.sin(h),
|
||||
f = P.PlotUtils.getThirdPoint(t[p - 1], t[p], Math.PI - h, d, !0),
|
||||
E = P.PlotUtils.getThirdPoint(t[p - 1], t[p], h, d, !1);
|
||||
u.push(f),
|
||||
c.push(E)
|
||||
}
|
||||
return u.concat(c)
|
||||
},
|
||||
xp.algorithm.dereplication = function (array) {
|
||||
var last = array[array.length - 1];
|
||||
var change = false;
|
||||
var newArray = [];
|
||||
newArray = array.filter(function (i) {
|
||||
if (i[0] != last[0] && i[1] != last[1]) {
|
||||
return i;
|
||||
}
|
||||
change = true;
|
||||
});
|
||||
if (change) newArray.push(last);
|
||||
return newArray;
|
||||
},
|
||||
xp.algorithm.fineArrow = function (tailPoint, headerPoint) {
|
||||
if ((tailPoint.length < 2) || (headerPoint.length < 2)) return;
|
||||
//画箭头的函数
|
||||
let tailWidthFactor = fineArrowDefualParam.tailWidthFactor;
|
||||
let neckWidthFactor = fineArrowDefualParam.neckWidthFactor;
|
||||
let headWidthFactor = fineArrowDefualParam.headWidthFactor;
|
||||
let headAngle = fineArrowDefualParam.headAngle;
|
||||
let neckAngle = fineArrowDefualParam.neckAngle;
|
||||
var o = [];
|
||||
o[0] = tailPoint;
|
||||
o[1] = headerPoint;
|
||||
e = o[0],
|
||||
r = o[1],
|
||||
n = P.PlotUtils.getBaseLength(o),
|
||||
g = n * tailWidthFactor,
|
||||
//尾部宽度因子
|
||||
i = n * neckWidthFactor,
|
||||
//脖子宽度银子
|
||||
s = n * headWidthFactor,
|
||||
//头部宽度因子
|
||||
a = P.PlotUtils.getThirdPoint(r, e, P.Constants.HALF_PI, g, !0),
|
||||
l = P.PlotUtils.getThirdPoint(r, e, P.Constants.HALF_PI, g, !1),
|
||||
u = P.PlotUtils.getThirdPoint(e, r, headAngle, s, !1),
|
||||
c = P.PlotUtils.getThirdPoint(e, r, headAngle, s, !0),
|
||||
p = P.PlotUtils.getThirdPoint(e, r, neckAngle, i, !1),
|
||||
h = P.PlotUtils.getThirdPoint(e, r, neckAngle, i, !0),
|
||||
d = [];
|
||||
d.push(a[0], a[1], p[0], p[1], u[0], u[1], r[0], r[1], c[0], c[1], h[0], h[1], l[0], l[1], e[0], e[1]);
|
||||
return Cesium.Cartesian3.fromDegreesArray(d);
|
||||
}
|
207
public/sdk/arrow/plotUtil.js
Normal file
207
public/sdk/arrow/plotUtil.js
Normal file
@ -0,0 +1,207 @@
|
||||
var P = {version: "1.0.0"}
|
||||
P.PlotUtils = {}, P.PlotUtils.distance = function (t, o) {
|
||||
return Math.sqrt(Math.pow(t[0] - o[0], 2) + Math.pow(t[1] - o[1], 2))
|
||||
}, P.PlotUtils.wholeDistance = function (t) {
|
||||
for (var o = 0, e = 0; e < t.length - 1; e++) o += P.PlotUtils.distance(t[e], t[e + 1]);
|
||||
return o
|
||||
}, P.PlotUtils.getBaseLength = function (t) {
|
||||
return Math.pow(P.PlotUtils.wholeDistance(t), .99)
|
||||
}, P.PlotUtils.mid = function (t, o) {
|
||||
return [(t[0] + o[0]) / 2, (t[1] + o[1]) / 2]
|
||||
}, P.PlotUtils.getCircleCenterOfThreePoints = function (t, o, e) {
|
||||
var r = [(t[0] + o[0]) / 2, (t[1] + o[1]) / 2],
|
||||
n = [r[0] - t[1] + o[1], r[1] + t[0] - o[0]],
|
||||
g = [(t[0] + e[0]) / 2, (t[1] + e[1]) / 2],
|
||||
i = [g[0] - t[1] + e[1], g[1] + t[0] - e[0]];
|
||||
return P.PlotUtils.getIntersectPoint(r, n, g, i)
|
||||
}, P.PlotUtils.getIntersectPoint = function (t, o, e, r) {
|
||||
if (t[1] == o[1]) {
|
||||
var n = (r[0] - e[0]) / (r[1] - e[1]),
|
||||
g = n * (t[1] - e[1]) + e[0],
|
||||
i = t[1];
|
||||
return [g, i]
|
||||
}
|
||||
if (e[1] == r[1]) {
|
||||
var s = (o[0] - t[0]) / (o[1] - t[1]);
|
||||
return g = s * (e[1] - t[1]) + t[0], i = e[1], [g, i]
|
||||
}
|
||||
return s = (o[0] - t[0]) / (o[1] - t[1]), n = (r[0] - e[0]) / (r[1] - e[1]), i = (s * t[1] - t[0] - n * e[1] + e[0]) / (s - n), g = s * i - s * t[1] + t[0], [g, i]
|
||||
}, P.PlotUtils.getAzimuth = function (t, o) {
|
||||
var e, r = Math.asin(Math.abs(o[1] - t[1]) / P.PlotUtils.distance(t, o));
|
||||
return o[1] >= t[1] && o[0] >= t[0] ? e = r + Math.PI : o[1] >= t[1] && o[0] < t[0] ? e = P.Constants.TWO_PI - r : o[1] < t[1] && o[0] < t[0] ? e = r : o[1] < t[1] && o[0] >= t[0] && (e = Math.PI - r), e
|
||||
}, P.PlotUtils.getAngleOfThreePoints = function (t, o, e) {
|
||||
var r = P.PlotUtils.getAzimuth(o, t) - P.PlotUtils.getAzimuth(o, e);
|
||||
return 0 > r ? r + P.Constants.TWO_PI : r
|
||||
}, P.PlotUtils.isClockWise = function (t, o, e) {
|
||||
return (e[1] - t[1]) * (o[0] - t[0]) > (o[1] - t[1]) * (e[0] - t[0])
|
||||
}, P.PlotUtils.getPointOnLine = function (t, o, e) {
|
||||
var r = o[0] + t * (e[0] - o[0]),
|
||||
n = o[1] + t * (e[1] - o[1]);
|
||||
return [r, n]
|
||||
}, P.PlotUtils.getCubicValue = function (t, o, e, r, n) {
|
||||
t = Math.max(Math.min(t, 1), 0);
|
||||
var g = 1 - t,
|
||||
i = t * t,
|
||||
s = i * t,
|
||||
a = g * g,
|
||||
l = a * g,
|
||||
u = l * o[0] + 3 * a * t * e[0] + 3 * g * i * r[0] + s * n[0],
|
||||
c = l * o[1] + 3 * a * t * e[1] + 3 * g * i * r[1] + s * n[1];
|
||||
return [u, c]
|
||||
}, P.PlotUtils.getThirdPoint = function (t, o, e, r, n) {
|
||||
var g = P.PlotUtils.getAzimuth(t, o),
|
||||
i = n ? g + e : g - e,
|
||||
s = r * Math.cos(i),
|
||||
a = r * Math.sin(i);
|
||||
return [o[0] + s, o[1] + a]
|
||||
}, P.PlotUtils.getArcPoints = function (t, o, e, r) {
|
||||
var n, g, i = [],
|
||||
s = r - e;
|
||||
s = 0 > s ? s + P.Constants.TWO_PI : s;
|
||||
for (var a = 0; a <= P.Constants.FITTING_COUNT; a++) {
|
||||
var l = e + s * a / P.Constants.FITTING_COUNT;
|
||||
n = t[0] + o * Math.cos(l), g = t[1] + o * Math.sin(l), i.push([n, g])
|
||||
}
|
||||
return i
|
||||
}, P.PlotUtils.getBisectorNormals = function (t, o, e, r) {
|
||||
var n = P.PlotUtils.getNormal(o, e, r),
|
||||
g = Math.sqrt(n[0] * n[0] + n[1] * n[1]),
|
||||
i = n[0] / g,
|
||||
s = n[1] / g,
|
||||
a = P.PlotUtils.distance(o, e),
|
||||
l = P.PlotUtils.distance(e, r);
|
||||
if (g > P.Constants.ZERO_TOLERANCE) if (P.PlotUtils.isClockWise(o, e, r)) {
|
||||
var u = t * a,
|
||||
c = e[0] - u * s,
|
||||
p = e[1] + u * i,
|
||||
h = [c, p];
|
||||
u = t * l, c = e[0] + u * s, p = e[1] - u * i;
|
||||
var d = [c, p]
|
||||
} else u = t * a, c = e[0] + u * s, p = e[1] - u * i, h = [c, p], u = t * l, c = e[0] - u * s, p = e[1] + u * i, d = [c, p];
|
||||
else c = e[0] + t * (o[0] - e[0]), p = e[1] + t * (o[1] - e[1]), h = [c, p], c = e[0] + t * (r[0] - e[0]), p = e[1] + t * (r[1] - e[1]), d = [c, p];
|
||||
return [h, d]
|
||||
}, P.PlotUtils.getNormal = function (t, o, e) {
|
||||
var r = t[0] - o[0],
|
||||
n = t[1] - o[1],
|
||||
g = Math.sqrt(r * r + n * n);
|
||||
r /= g, n /= g;
|
||||
var i = e[0] - o[0],
|
||||
s = e[1] - o[1],
|
||||
a = Math.sqrt(i * i + s * s);
|
||||
i /= a, s /= a;
|
||||
var l = r + i,
|
||||
u = n + s;
|
||||
return [l, u]
|
||||
}, P.PlotUtils.getCurvePoints = function (t, o) {
|
||||
for (var e = P.PlotUtils.getLeftMostControlPoint(o), r = [e], n = 0; n < o.length - 2; n++) {
|
||||
var g = o[n],
|
||||
i = o[n + 1],
|
||||
s = o[n + 2],
|
||||
a = P.PlotUtils.getBisectorNormals(t, g, i, s);
|
||||
r = r.concat(a)
|
||||
}
|
||||
var l = P.PlotUtils.getRightMostControlPoint(o);
|
||||
r.push(l);
|
||||
var u = [];
|
||||
for (n = 0; n < o.length - 1; n++) {
|
||||
g = o[n], i = o[n + 1], u.push(g);
|
||||
for (var t = 0; t < P.Constants.FITTING_COUNT; t++) {
|
||||
var c = P.PlotUtils.getCubicValue(t / P.Constants.FITTING_COUNT, g, r[2 * n], r[2 * n + 1], i);
|
||||
u.push(c)
|
||||
}
|
||||
u.push(i)
|
||||
}
|
||||
return u
|
||||
}, P.PlotUtils.getLeftMostControlPoint = function (o) {
|
||||
var e = o[0],
|
||||
r = o[1],
|
||||
n = o[2],
|
||||
g = P.PlotUtils.getBisectorNormals(0, e, r, n),
|
||||
i = g[0],
|
||||
s = P.PlotUtils.getNormal(e, r, n),
|
||||
a = Math.sqrt(s[0] * s[0] + s[1] * s[1]);
|
||||
if (a > P.Constants.ZERO_TOLERANCE) var l = P.PlotUtils.mid(e, r),
|
||||
u = e[0] - l[0],
|
||||
c = e[1] - l[1],
|
||||
p = P.PlotUtils.distance(e, r),
|
||||
h = 2 / p,
|
||||
d = -h * c,
|
||||
f = h * u,
|
||||
E = d * d - f * f,
|
||||
v = 2 * d * f,
|
||||
A = f * f - d * d,
|
||||
_ = i[0] - l[0],
|
||||
y = i[1] - l[1],
|
||||
m = l[0] + E * _ + v * y,
|
||||
O = l[1] + v * _ + A * y;
|
||||
else m = e[0] + t * (r[0] - e[0]), O = e[1] + t * (r[1] - e[1]);
|
||||
return [m, O]
|
||||
}, P.PlotUtils.getRightMostControlPoint = function (o) {
|
||||
var e = o.length,
|
||||
r = o[e - 3],
|
||||
n = o[e - 2],
|
||||
g = o[e - 1],
|
||||
i = P.PlotUtils.getBisectorNormals(0, r, n, g),
|
||||
s = i[1],
|
||||
a = P.PlotUtils.getNormal(r, n, g),
|
||||
l = Math.sqrt(a[0] * a[0] + a[1] * a[1]);
|
||||
if (l > P.Constants.ZERO_TOLERANCE) var u = P.PlotUtils.mid(n, g),
|
||||
c = g[0] - u[0],
|
||||
p = g[1] - u[1],
|
||||
h = P.PlotUtils.distance(n, g),
|
||||
d = 2 / h,
|
||||
f = -d * p,
|
||||
E = d * c,
|
||||
v = f * f - E * E,
|
||||
A = 2 * f * E,
|
||||
_ = E * E - f * f,
|
||||
y = s[0] - u[0],
|
||||
m = s[1] - u[1],
|
||||
O = u[0] + v * y + A * m,
|
||||
T = u[1] + A * y + _ * m;
|
||||
else O = g[0] + t * (n[0] - g[0]), T = g[1] + t * (n[1] - g[1]);
|
||||
return [O, T]
|
||||
}, P.PlotUtils.getBezierPoints = function (t) {
|
||||
if (t.length <= 2) return t;
|
||||
for (var o = [], e = t.length - 1, r = 0; 1 >= r; r += .01) {
|
||||
for (var n = y = 0, g = 0; e >= g; g++) {
|
||||
var i = P.PlotUtils.getBinomialFactor(e, g),
|
||||
s = Math.pow(r, g),
|
||||
a = Math.pow(1 - r, e - g);
|
||||
n += i * s * a * t[g][0], y += i * s * a * t[g][1]
|
||||
}
|
||||
o.push([n, y])
|
||||
}
|
||||
return o.push(t[e]), o
|
||||
}, P.PlotUtils.getBinomialFactor = function (t, o) {
|
||||
return P.PlotUtils.getFactorial(t) / (P.PlotUtils.getFactorial(o) * P.PlotUtils.getFactorial(t - o))
|
||||
}, P.PlotUtils.getFactorial = function (t) {
|
||||
if (1 >= t) return 1;
|
||||
if (2 == t) return 2;
|
||||
if (3 == t) return 6;
|
||||
if (4 == t) return 24;
|
||||
if (5 == t) return 120;
|
||||
for (var o = 1, e = 1; t >= e; e++) o *= e;
|
||||
return o
|
||||
}, P.PlotUtils.getQBSplinePoints = function (t) {
|
||||
if (t.length <= 2) return t;
|
||||
var o = 2,
|
||||
e = [],
|
||||
r = t.length - o - 1;
|
||||
e.push(t[0]);
|
||||
for (var n = 0; r >= n; n++) for (var g = 0; 1 >= g; g += .05) {
|
||||
for (var i = y = 0, s = 0; o >= s; s++) {
|
||||
var a = P.PlotUtils.getQuadricBSplineFactor(s, g);
|
||||
i += a * t[n + s][0], y += a * t[n + s][1]
|
||||
}
|
||||
e.push([i, y])
|
||||
}
|
||||
return e.push(t[t.length - 1]), e
|
||||
}, P.PlotUtils.getQuadricBSplineFactor = function (t, o) {
|
||||
return 0 == t ? Math.pow(o - 1, 2) / 2 : 1 == t ? (-2 * Math.pow(o, 2) + 2 * o + 1) / 2 : 2 == t ? Math.pow(o, 2) / 2 : 0
|
||||
}, P.Constants = {
|
||||
TWO_PI: 2 * Math.PI,
|
||||
HALF_PI: Math.PI / 2,
|
||||
FITTING_COUNT: 100,
|
||||
ZERO_TOLERANCE: 1e-4
|
||||
}
|
Reference in New Issue
Block a user