220 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			220 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| import {
 | |
| 	BackSide,
 | |
| 	BoxGeometry,
 | |
| 	Mesh,
 | |
| 	ShaderMaterial,
 | |
| 	UniformsUtils,
 | |
| 	Vector3
 | |
| } from 'three';
 | |
| 
 | |
| /**
 | |
|  * Based on "A Practical Analytic Model for Daylight"
 | |
|  * aka The Preetham Model, the de facto standard analytic skydome model
 | |
|  * https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight
 | |
|  *
 | |
|  * First implemented by Simon Wallner
 | |
|  * http://simonwallner.at/project/atmospheric-scattering/
 | |
|  *
 | |
|  * Improved by Martin Upitis
 | |
|  * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
 | |
|  *
 | |
|  * Three.js integration by zz85 http://twitter.com/blurspline
 | |
| */
 | |
| 
 | |
| class Sky extends Mesh {
 | |
| 
 | |
| 	constructor() {
 | |
| 
 | |
| 		const shader = Sky.SkyShader;
 | |
| 
 | |
| 		const material = new ShaderMaterial( {
 | |
| 			name: shader.name,
 | |
| 			uniforms: UniformsUtils.clone( shader.uniforms ),
 | |
| 			vertexShader: shader.vertexShader,
 | |
| 			fragmentShader: shader.fragmentShader,
 | |
| 			side: BackSide,
 | |
| 			depthWrite: false
 | |
| 		} );
 | |
| 
 | |
| 		super( new BoxGeometry( 1, 1, 1 ), material );
 | |
| 
 | |
| 		this.isSky = true;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| Sky.SkyShader = {
 | |
| 
 | |
| 	name: 'SkyShader',
 | |
| 
 | |
| 	uniforms: {
 | |
| 		'turbidity': { value: 2 },
 | |
| 		'rayleigh': { value: 1 },
 | |
| 		'mieCoefficient': { value: 0.005 },
 | |
| 		'mieDirectionalG': { value: 0.8 },
 | |
| 		'sunPosition': { value: new Vector3() },
 | |
| 		'up': { value: new Vector3( 0, 1, 0 ) }
 | |
| 	},
 | |
| 
 | |
| 	vertexShader: /* glsl */`
 | |
| 		uniform vec3 sunPosition;
 | |
| 		uniform float rayleigh;
 | |
| 		uniform float turbidity;
 | |
| 		uniform float mieCoefficient;
 | |
| 		uniform vec3 up;
 | |
| 
 | |
| 		varying vec3 vWorldPosition;
 | |
| 		varying vec3 vSunDirection;
 | |
| 		varying float vSunfade;
 | |
| 		varying vec3 vBetaR;
 | |
| 		varying vec3 vBetaM;
 | |
| 		varying float vSunE;
 | |
| 
 | |
| 		// constants for atmospheric scattering
 | |
| 		const float e = 2.71828182845904523536028747135266249775724709369995957;
 | |
| 		const float pi = 3.141592653589793238462643383279502884197169;
 | |
| 
 | |
| 		// wavelength of used primaries, according to preetham
 | |
| 		const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );
 | |
| 		// this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
 | |
| 		// (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
 | |
| 		const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );
 | |
| 
 | |
| 		// mie stuff
 | |
| 		// K coefficient for the primaries
 | |
| 		const float v = 4.0;
 | |
| 		const vec3 K = vec3( 0.686, 0.678, 0.666 );
 | |
| 		// MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
 | |
| 		const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );
 | |
| 
 | |
| 		// earth shadow hack
 | |
| 		// cutoffAngle = pi / 1.95;
 | |
| 		const float cutoffAngle = 1.6110731556870734;
 | |
| 		const float steepness = 1.5;
 | |
| 		const float EE = 1000.0;
 | |
| 
 | |
| 		float sunIntensity( float zenithAngleCos ) {
 | |
| 			zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );
 | |
| 			return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );
 | |
| 		}
 | |
| 
 | |
| 		vec3 totalMie( float T ) {
 | |
| 			float c = ( 0.2 * T ) * 10E-18;
 | |
| 			return 0.434 * c * MieConst;
 | |
| 		}
 | |
| 
 | |
| 		void main() {
 | |
| 
 | |
| 			vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
 | |
| 			vWorldPosition = worldPosition.xyz;
 | |
| 
 | |
| 			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
 | |
| 			gl_Position.z = gl_Position.w; // set z to camera.far
 | |
| 
 | |
| 			vSunDirection = normalize( sunPosition );
 | |
| 
 | |
| 			vSunE = sunIntensity( dot( vSunDirection, up ) );
 | |
| 
 | |
| 			vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );
 | |
| 
 | |
| 			float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );
 | |
| 
 | |
| 			// extinction (absorbtion + out scattering)
 | |
| 			// rayleigh coefficients
 | |
| 			vBetaR = totalRayleigh * rayleighCoefficient;
 | |
| 
 | |
| 			// mie coefficients
 | |
| 			vBetaM = totalMie( turbidity ) * mieCoefficient;
 | |
| 
 | |
| 		}`,
 | |
| 
 | |
| 	fragmentShader: /* glsl */`
 | |
| 		varying vec3 vWorldPosition;
 | |
| 		varying vec3 vSunDirection;
 | |
| 		varying float vSunfade;
 | |
| 		varying vec3 vBetaR;
 | |
| 		varying vec3 vBetaM;
 | |
| 		varying float vSunE;
 | |
| 
 | |
| 		uniform float mieDirectionalG;
 | |
| 		uniform vec3 up;
 | |
| 
 | |
| 		// constants for atmospheric scattering
 | |
| 		const float pi = 3.141592653589793238462643383279502884197169;
 | |
| 
 | |
| 		const float n = 1.0003; // refractive index of air
 | |
| 		const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius)
 | |
| 
 | |
| 		// optical length at zenith for molecules
 | |
| 		const float rayleighZenithLength = 8.4E3;
 | |
| 		const float mieZenithLength = 1.25E3;
 | |
| 		// 66 arc seconds -> degrees, and the cosine of that
 | |
| 		const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;
 | |
| 
 | |
| 		// 3.0 / ( 16.0 * pi )
 | |
| 		const float THREE_OVER_SIXTEENPI = 0.05968310365946075;
 | |
| 		// 1.0 / ( 4.0 * pi )
 | |
| 		const float ONE_OVER_FOURPI = 0.07957747154594767;
 | |
| 
 | |
| 		float rayleighPhase( float cosTheta ) {
 | |
| 			return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );
 | |
| 		}
 | |
| 
 | |
| 		float hgPhase( float cosTheta, float g ) {
 | |
| 			float g2 = pow( g, 2.0 );
 | |
| 			float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );
 | |
| 			return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );
 | |
| 		}
 | |
| 
 | |
| 		void main() {
 | |
| 
 | |
| 			vec3 direction = normalize( vWorldPosition - cameraPosition );
 | |
| 
 | |
| 			// optical length
 | |
| 			// cutoff angle at 90 to avoid singularity in next formula.
 | |
| 			float zenithAngle = acos( max( 0.0, dot( up, direction ) ) );
 | |
| 			float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );
 | |
| 			float sR = rayleighZenithLength * inverse;
 | |
| 			float sM = mieZenithLength * inverse;
 | |
| 
 | |
| 			// combined extinction factor
 | |
| 			vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );
 | |
| 
 | |
| 			// in scattering
 | |
| 			float cosTheta = dot( direction, vSunDirection );
 | |
| 
 | |
| 			float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );
 | |
| 			vec3 betaRTheta = vBetaR * rPhase;
 | |
| 
 | |
| 			float mPhase = hgPhase( cosTheta, mieDirectionalG );
 | |
| 			vec3 betaMTheta = vBetaM * mPhase;
 | |
| 
 | |
| 			vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );
 | |
| 			Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );
 | |
| 
 | |
| 			// nightsky
 | |
| 			float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]
 | |
| 			float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]
 | |
| 			vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );
 | |
| 			vec3 L0 = vec3( 0.1 ) * Fex;
 | |
| 
 | |
| 			// composition + solar disc
 | |
| 			float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );
 | |
| 			L0 += ( vSunE * 19000.0 * Fex ) * sundisk;
 | |
| 
 | |
| 			vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );
 | |
| 
 | |
| 			vec3 retColor = pow( texColor, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );
 | |
| 
 | |
| 			gl_FragColor = vec4( retColor, 1.0 );
 | |
| 
 | |
| 			#include <tonemapping_fragment>
 | |
| 			#include <colorspace_fragment>
 | |
| 
 | |
| 		}`
 | |
| 
 | |
| };
 | |
| 
 | |
| export { Sky };
 |