290 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| import {
 | |
| 	Vector2,
 | |
| 	Vector3
 | |
| } from 'three';
 | |
| 
 | |
| /**
 | |
|  * Shaders to render 3D volumes using raycasting.
 | |
|  * The applied techniques are based on similar implementations in the Visvis and Vispy projects.
 | |
|  * This is not the only approach, therefore it's marked 1.
 | |
|  */
 | |
| 
 | |
| const VolumeRenderShader1 = {
 | |
| 
 | |
| 	uniforms: {
 | |
| 		'u_size': { value: new Vector3( 1, 1, 1 ) },
 | |
| 		'u_renderstyle': { value: 0 },
 | |
| 		'u_renderthreshold': { value: 0.5 },
 | |
| 		'u_clim': { value: new Vector2( 1, 1 ) },
 | |
| 		'u_data': { value: null },
 | |
| 		'u_cmdata': { value: null }
 | |
| 	},
 | |
| 
 | |
| 	vertexShader: /* glsl */`
 | |
| 
 | |
| 		varying vec4 v_nearpos;
 | |
| 		varying vec4 v_farpos;
 | |
| 		varying vec3 v_position;
 | |
| 
 | |
| 		void main() {
 | |
| 				// Prepare transforms to map to "camera view". See also:
 | |
| 				// https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
 | |
| 				mat4 viewtransformf = modelViewMatrix;
 | |
| 				mat4 viewtransformi = inverse(modelViewMatrix);
 | |
| 
 | |
| 				// Project local vertex coordinate to camera position. Then do a step
 | |
| 				// backward (in cam coords) to the near clipping plane, and project back. Do
 | |
| 				// the same for the far clipping plane. This gives us all the information we
 | |
| 				// need to calculate the ray and truncate it to the viewing cone.
 | |
| 				vec4 position4 = vec4(position, 1.0);
 | |
| 				vec4 pos_in_cam = viewtransformf * position4;
 | |
| 
 | |
| 				// Intersection of ray and near clipping plane (z = -1 in clip coords)
 | |
| 				pos_in_cam.z = -pos_in_cam.w;
 | |
| 				v_nearpos = viewtransformi * pos_in_cam;
 | |
| 
 | |
| 				// Intersection of ray and far clipping plane (z = +1 in clip coords)
 | |
| 				pos_in_cam.z = pos_in_cam.w;
 | |
| 				v_farpos = viewtransformi * pos_in_cam;
 | |
| 
 | |
| 				// Set varyings and output pos
 | |
| 				v_position = position;
 | |
| 				gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;
 | |
| 		}`,
 | |
| 
 | |
| 	fragmentShader: /* glsl */`
 | |
| 
 | |
| 				precision highp float;
 | |
| 				precision mediump sampler3D;
 | |
| 
 | |
| 				uniform vec3 u_size;
 | |
| 				uniform int u_renderstyle;
 | |
| 				uniform float u_renderthreshold;
 | |
| 				uniform vec2 u_clim;
 | |
| 
 | |
| 				uniform sampler3D u_data;
 | |
| 				uniform sampler2D u_cmdata;
 | |
| 
 | |
| 				varying vec3 v_position;
 | |
| 				varying vec4 v_nearpos;
 | |
| 				varying vec4 v_farpos;
 | |
| 
 | |
| 				// The maximum distance through our rendering volume is sqrt(3).
 | |
| 				const int MAX_STEPS = 887;	// 887 for 512^3, 1774 for 1024^3
 | |
| 				const int REFINEMENT_STEPS = 4;
 | |
| 				const float relative_step_size = 1.0;
 | |
| 				const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);
 | |
| 				const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);
 | |
| 				const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);
 | |
| 				const float shininess = 40.0;
 | |
| 
 | |
| 				void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
 | |
| 				void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
 | |
| 
 | |
| 				float sample1(vec3 texcoords);
 | |
| 				vec4 apply_colormap(float val);
 | |
| 				vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);
 | |
| 
 | |
| 
 | |
| 				void main() {
 | |
| 						// Normalize clipping plane info
 | |
| 						vec3 farpos = v_farpos.xyz / v_farpos.w;
 | |
| 						vec3 nearpos = v_nearpos.xyz / v_nearpos.w;
 | |
| 
 | |
| 						// Calculate unit vector pointing in the view direction through this fragment.
 | |
| 						vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);
 | |
| 
 | |
| 						// Compute the (negative) distance to the front surface or near clipping plane.
 | |
| 						// v_position is the back face of the cuboid, so the initial distance calculated in the dot
 | |
| 						// product below is the distance from near clip plane to the back of the cuboid
 | |
| 						float distance = dot(nearpos - v_position, view_ray);
 | |
| 						distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,
 | |
| 																				(u_size.x - 0.5 - v_position.x) / view_ray.x));
 | |
| 						distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,
 | |
| 																				(u_size.y - 0.5 - v_position.y) / view_ray.y));
 | |
| 						distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,
 | |
| 																				(u_size.z - 0.5 - v_position.z) / view_ray.z));
 | |
| 
 | |
| 						// Now we have the starting position on the front surface
 | |
| 						vec3 front = v_position + view_ray * distance;
 | |
| 
 | |
| 						// Decide how many steps to take
 | |
| 						int nsteps = int(-distance / relative_step_size + 0.5);
 | |
| 						if ( nsteps < 1 )
 | |
| 								discard;
 | |
| 
 | |
| 						// Get starting location and step vector in texture coordinates
 | |
| 						vec3 step = ((v_position - front) / u_size) / float(nsteps);
 | |
| 						vec3 start_loc = front / u_size;
 | |
| 
 | |
| 						// For testing: show the number of steps. This helps to establish
 | |
| 						// whether the rays are correctly oriented
 | |
| 						//'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);
 | |
| 						//'return;
 | |
| 
 | |
| 						if (u_renderstyle == 0)
 | |
| 								cast_mip(start_loc, step, nsteps, view_ray);
 | |
| 						else if (u_renderstyle == 1)
 | |
| 								cast_iso(start_loc, step, nsteps, view_ray);
 | |
| 
 | |
| 						if (gl_FragColor.a < 0.05)
 | |
| 								discard;
 | |
| 				}
 | |
| 
 | |
| 
 | |
| 				float sample1(vec3 texcoords) {
 | |
| 						/* Sample float value from a 3D texture. Assumes intensity data. */
 | |
| 						return texture(u_data, texcoords.xyz).r;
 | |
| 				}
 | |
| 
 | |
| 
 | |
| 				vec4 apply_colormap(float val) {
 | |
| 						val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);
 | |
| 						return texture2D(u_cmdata, vec2(val, 0.5));
 | |
| 				}
 | |
| 
 | |
| 
 | |
| 				void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
 | |
| 
 | |
| 						float max_val = -1e6;
 | |
| 						int max_i = 100;
 | |
| 						vec3 loc = start_loc;
 | |
| 
 | |
| 						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
 | |
| 						// non-constant expression. So we use a hard-coded max, and an additional condition
 | |
| 						// inside the loop.
 | |
| 						for (int iter=0; iter<MAX_STEPS; iter++) {
 | |
| 								if (iter >= nsteps)
 | |
| 										break;
 | |
| 								// Sample from the 3D texture
 | |
| 								float val = sample1(loc);
 | |
| 								// Apply MIP operation
 | |
| 								if (val > max_val) {
 | |
| 										max_val = val;
 | |
| 										max_i = iter;
 | |
| 								}
 | |
| 								// Advance location deeper into the volume
 | |
| 								loc += step;
 | |
| 						}
 | |
| 
 | |
| 						// Refine location, gives crispier images
 | |
| 						vec3 iloc = start_loc + step * (float(max_i) - 0.5);
 | |
| 						vec3 istep = step / float(REFINEMENT_STEPS);
 | |
| 						for (int i=0; i<REFINEMENT_STEPS; i++) {
 | |
| 								max_val = max(max_val, sample1(iloc));
 | |
| 								iloc += istep;
 | |
| 						}
 | |
| 
 | |
| 						// Resolve final color
 | |
| 						gl_FragColor = apply_colormap(max_val);
 | |
| 				}
 | |
| 
 | |
| 
 | |
| 				void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
 | |
| 
 | |
| 						gl_FragColor = vec4(0.0);	// init transparent
 | |
| 						vec4 color3 = vec4(0.0);	// final color
 | |
| 						vec3 dstep = 1.5 / u_size;	// step to sample derivative
 | |
| 						vec3 loc = start_loc;
 | |
| 
 | |
| 						float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);
 | |
| 
 | |
| 						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
 | |
| 						// non-constant expression. So we use a hard-coded max, and an additional condition
 | |
| 						// inside the loop.
 | |
| 						for (int iter=0; iter<MAX_STEPS; iter++) {
 | |
| 								if (iter >= nsteps)
 | |
| 										break;
 | |
| 
 | |
| 								// Sample from the 3D texture
 | |
| 								float val = sample1(loc);
 | |
| 
 | |
| 								if (val > low_threshold) {
 | |
| 										// Take the last interval in smaller steps
 | |
| 										vec3 iloc = loc - 0.5 * step;
 | |
| 										vec3 istep = step / float(REFINEMENT_STEPS);
 | |
| 										for (int i=0; i<REFINEMENT_STEPS; i++) {
 | |
| 												val = sample1(iloc);
 | |
| 												if (val > u_renderthreshold) {
 | |
| 														gl_FragColor = add_lighting(val, iloc, dstep, view_ray);
 | |
| 														return;
 | |
| 												}
 | |
| 												iloc += istep;
 | |
| 										}
 | |
| 								}
 | |
| 
 | |
| 								// Advance location deeper into the volume
 | |
| 								loc += step;
 | |
| 						}
 | |
| 				}
 | |
| 
 | |
| 
 | |
| 				vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)
 | |
| 				{
 | |
| 					// Calculate color by incorporating lighting
 | |
| 
 | |
| 						// View direction
 | |
| 						vec3 V = normalize(view_ray);
 | |
| 
 | |
| 						// calculate normal vector from gradient
 | |
| 						vec3 N;
 | |
| 						float val1, val2;
 | |
| 						val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));
 | |
| 						val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));
 | |
| 						N[0] = val1 - val2;
 | |
| 						val = max(max(val1, val2), val);
 | |
| 						val1 = sample1(loc + vec3(0.0, -step[1], 0.0));
 | |
| 						val2 = sample1(loc + vec3(0.0, +step[1], 0.0));
 | |
| 						N[1] = val1 - val2;
 | |
| 						val = max(max(val1, val2), val);
 | |
| 						val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));
 | |
| 						val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));
 | |
| 						N[2] = val1 - val2;
 | |
| 						val = max(max(val1, val2), val);
 | |
| 
 | |
| 						float gm = length(N); // gradient magnitude
 | |
| 						N = normalize(N);
 | |
| 
 | |
| 						// Flip normal so it points towards viewer
 | |
| 						float Nselect = float(dot(N, V) > 0.0);
 | |
| 						N = (2.0 * Nselect - 1.0) * N;	// ==	Nselect * N - (1.0-Nselect)*N;
 | |
| 
 | |
| 						// Init colors
 | |
| 						vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);
 | |
| 						vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);
 | |
| 						vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);
 | |
| 
 | |
| 						// note: could allow multiple lights
 | |
| 						for (int i=0; i<1; i++)
 | |
| 						{
 | |
| 								 // Get light direction (make sure to prevent zero devision)
 | |
| 								vec3 L = normalize(view_ray);	//lightDirs[i];
 | |
| 								float lightEnabled = float( length(L) > 0.0 );
 | |
| 								L = normalize(L + (1.0 - lightEnabled));
 | |
| 
 | |
| 								// Calculate lighting properties
 | |
| 								float lambertTerm = clamp(dot(N, L), 0.0, 1.0);
 | |
| 								vec3 H = normalize(L+V); // Halfway vector
 | |
| 								float specularTerm = pow(max(dot(H, N), 0.0), shininess);
 | |
| 
 | |
| 								// Calculate mask
 | |
| 								float mask1 = lightEnabled;
 | |
| 
 | |
| 								// Calculate colors
 | |
| 								ambient_color +=	mask1 * ambient_color;	// * gl_LightSource[i].ambient;
 | |
| 								diffuse_color +=	mask1 * lambertTerm;
 | |
| 								specular_color += mask1 * specularTerm * specular_color;
 | |
| 						}
 | |
| 
 | |
| 						// Calculate final color by componing different components
 | |
| 						vec4 final_color;
 | |
| 						vec4 color = apply_colormap(val);
 | |
| 						final_color = color * (ambient_color + diffuse_color) + specular_color;
 | |
| 						final_color.a = color.a;
 | |
| 						return final_color;
 | |
| 				}`
 | |
| 
 | |
| };
 | |
| 
 | |
| export { VolumeRenderShader1 };
 |