222 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| import { Vector3 } from 'three';
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Generates 2D-Coordinates in a very fast way.
 | |
|  *
 | |
|  * Based on work by:
 | |
|  * @link http://www.openprocessing.org/sketch/15493
 | |
|  *
 | |
|  * @param center     Center of Hilbert curve.
 | |
|  * @param size       Total width of Hilbert curve.
 | |
|  * @param iterations Number of subdivisions.
 | |
|  * @param v0         Corner index -X, -Z.
 | |
|  * @param v1         Corner index -X, +Z.
 | |
|  * @param v2         Corner index +X, +Z.
 | |
|  * @param v3         Corner index +X, -Z.
 | |
|  */
 | |
| function hilbert2D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) {
 | |
| 
 | |
| 	const half = size / 2;
 | |
| 
 | |
| 	const vec_s = [
 | |
| 		new Vector3( center.x - half, center.y, center.z - half ),
 | |
| 		new Vector3( center.x - half, center.y, center.z + half ),
 | |
| 		new Vector3( center.x + half, center.y, center.z + half ),
 | |
| 		new Vector3( center.x + half, center.y, center.z - half )
 | |
| 	];
 | |
| 
 | |
| 	const vec = [
 | |
| 		vec_s[ v0 ],
 | |
| 		vec_s[ v1 ],
 | |
| 		vec_s[ v2 ],
 | |
| 		vec_s[ v3 ]
 | |
| 	];
 | |
| 
 | |
| 	// Recurse iterations
 | |
| 	if ( 0 <= -- iterations ) {
 | |
| 
 | |
| 		return [
 | |
| 			...hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ),
 | |
| 			...hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ),
 | |
| 			...hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ),
 | |
| 			...hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 )
 | |
| 		];
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	// Return complete Hilbert Curve.
 | |
| 	return vec;
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generates 3D-Coordinates in a very fast way.
 | |
|  *
 | |
|  * Based on work by:
 | |
|  * @link https://openprocessing.org/user/5654
 | |
|  *
 | |
|  * @param center     Center of Hilbert curve.
 | |
|  * @param size       Total width of Hilbert curve.
 | |
|  * @param iterations Number of subdivisions.
 | |
|  * @param v0         Corner index -X, +Y, -Z.
 | |
|  * @param v1         Corner index -X, +Y, +Z.
 | |
|  * @param v2         Corner index -X, -Y, +Z.
 | |
|  * @param v3         Corner index -X, -Y, -Z.
 | |
|  * @param v4         Corner index +X, -Y, -Z.
 | |
|  * @param v5         Corner index +X, -Y, +Z.
 | |
|  * @param v6         Corner index +X, +Y, +Z.
 | |
|  * @param v7         Corner index +X, +Y, -Z.
 | |
|  */
 | |
| function hilbert3D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) {
 | |
| 
 | |
| 	// Default Vars
 | |
| 	const half = size / 2;
 | |
| 
 | |
| 	const vec_s = [
 | |
| 		new Vector3( center.x - half, center.y + half, center.z - half ),
 | |
| 		new Vector3( center.x - half, center.y + half, center.z + half ),
 | |
| 		new Vector3( center.x - half, center.y - half, center.z + half ),
 | |
| 		new Vector3( center.x - half, center.y - half, center.z - half ),
 | |
| 		new Vector3( center.x + half, center.y - half, center.z - half ),
 | |
| 		new Vector3( center.x + half, center.y - half, center.z + half ),
 | |
| 		new Vector3( center.x + half, center.y + half, center.z + half ),
 | |
| 		new Vector3( center.x + half, center.y + half, center.z - half )
 | |
| 	];
 | |
| 
 | |
| 	const vec = [
 | |
| 		vec_s[ v0 ],
 | |
| 		vec_s[ v1 ],
 | |
| 		vec_s[ v2 ],
 | |
| 		vec_s[ v3 ],
 | |
| 		vec_s[ v4 ],
 | |
| 		vec_s[ v5 ],
 | |
| 		vec_s[ v6 ],
 | |
| 		vec_s[ v7 ]
 | |
| 	];
 | |
| 
 | |
| 	// Recurse iterations
 | |
| 	if ( -- iterations >= 0 ) {
 | |
| 
 | |
| 		return [
 | |
| 			...hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ),
 | |
| 			...hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
 | |
| 			...hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
 | |
| 			...hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
 | |
| 			...hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
 | |
| 			...hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
 | |
| 			...hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
 | |
| 			...hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 )
 | |
| 		];
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	// Return complete Hilbert Curve.
 | |
| 	return vec;
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generates a Gosper curve (lying in the XY plane)
 | |
|  *
 | |
|  * https://gist.github.com/nitaku/6521802
 | |
|  *
 | |
|  * @param size The size of a single gosper island.
 | |
|  */
 | |
| function gosper( size = 1 ) {
 | |
| 
 | |
| 	function fractalize( config ) {
 | |
| 
 | |
| 		let output;
 | |
| 		let input = config.axiom;
 | |
| 
 | |
| 		for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {
 | |
| 
 | |
| 			output = '';
 | |
| 
 | |
| 			for ( let j = 0, jl = input.length; j < jl; j ++ ) {
 | |
| 
 | |
| 				const char = input[ j ];
 | |
| 
 | |
| 				if ( char in config.rules ) {
 | |
| 
 | |
| 					output += config.rules[ char ];
 | |
| 
 | |
| 				} else {
 | |
| 
 | |
| 					output += char;
 | |
| 
 | |
| 				}
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 			input = output;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		return output;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	function toPoints( config ) {
 | |
| 
 | |
| 		let currX = 0, currY = 0;
 | |
| 		let angle = 0;
 | |
| 		const path = [ 0, 0, 0 ];
 | |
| 		const fractal = config.fractal;
 | |
| 
 | |
| 		for ( let i = 0, l = fractal.length; i < l; i ++ ) {
 | |
| 
 | |
| 			const char = fractal[ i ];
 | |
| 
 | |
| 			if ( char === '+' ) {
 | |
| 
 | |
| 				angle += config.angle;
 | |
| 
 | |
| 			} else if ( char === '-' ) {
 | |
| 
 | |
| 				angle -= config.angle;
 | |
| 
 | |
| 			} else if ( char === 'F' ) {
 | |
| 
 | |
| 				currX += config.size * Math.cos( angle );
 | |
| 				currY += - config.size * Math.sin( angle );
 | |
| 				path.push( currX, currY, 0 );
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		return path;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	//
 | |
| 
 | |
| 	const gosper = fractalize( {
 | |
| 		axiom: 'A',
 | |
| 		steps: 4,
 | |
| 		rules: {
 | |
| 			A: 'A+BF++BF-FA--FAFA-BF+',
 | |
| 			B: '-FA+BFBF++BF+FA--FA-B'
 | |
| 		}
 | |
| 	} );
 | |
| 
 | |
| 	const points = toPoints( {
 | |
| 		fractal: gosper,
 | |
| 		size: size,
 | |
| 		angle: Math.PI / 3 // 60 degrees
 | |
| 	} );
 | |
| 
 | |
| 	return points;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| export {
 | |
| 	hilbert2D,
 | |
| 	hilbert3D,
 | |
| 	gosper,
 | |
| };
 |