543 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			543 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
import {
 | 
						|
	Vector3,
 | 
						|
	Vector4
 | 
						|
} from 'three';
 | 
						|
 | 
						|
/**
 | 
						|
 * NURBS utils
 | 
						|
 *
 | 
						|
 * See NURBSCurve and NURBSSurface.
 | 
						|
 **/
 | 
						|
 | 
						|
 | 
						|
/**************************************************************
 | 
						|
 *	NURBS Utils
 | 
						|
 **************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
Finds knot vector span.
 | 
						|
 | 
						|
p : degree
 | 
						|
u : parametric value
 | 
						|
U : knot vector
 | 
						|
 | 
						|
returns the span
 | 
						|
*/
 | 
						|
function findSpan( p, u, U ) {
 | 
						|
 | 
						|
	const n = U.length - p - 1;
 | 
						|
 | 
						|
	if ( u >= U[ n ] ) {
 | 
						|
 | 
						|
		return n - 1;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	if ( u <= U[ p ] ) {
 | 
						|
 | 
						|
		return p;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	let low = p;
 | 
						|
	let high = n;
 | 
						|
	let mid = Math.floor( ( low + high ) / 2 );
 | 
						|
 | 
						|
	while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
 | 
						|
 | 
						|
		if ( u < U[ mid ] ) {
 | 
						|
 | 
						|
			high = mid;
 | 
						|
 | 
						|
		} else {
 | 
						|
 | 
						|
			low = mid;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		mid = Math.floor( ( low + high ) / 2 );
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	return mid;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
 | 
						|
 | 
						|
span : span in which u lies
 | 
						|
u    : parametric point
 | 
						|
p    : degree
 | 
						|
U    : knot vector
 | 
						|
 | 
						|
returns array[p+1] with basis functions values.
 | 
						|
*/
 | 
						|
function calcBasisFunctions( span, u, p, U ) {
 | 
						|
 | 
						|
	const N = [];
 | 
						|
	const left = [];
 | 
						|
	const right = [];
 | 
						|
	N[ 0 ] = 1.0;
 | 
						|
 | 
						|
	for ( let j = 1; j <= p; ++ j ) {
 | 
						|
 | 
						|
		left[ j ] = u - U[ span + 1 - j ];
 | 
						|
		right[ j ] = U[ span + j ] - u;
 | 
						|
 | 
						|
		let saved = 0.0;
 | 
						|
 | 
						|
		for ( let r = 0; r < j; ++ r ) {
 | 
						|
 | 
						|
			const rv = right[ r + 1 ];
 | 
						|
			const lv = left[ j - r ];
 | 
						|
			const temp = N[ r ] / ( rv + lv );
 | 
						|
			N[ r ] = saved + rv * temp;
 | 
						|
			saved = lv * temp;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		N[ j ] = saved;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	return N;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
 | 
						|
 | 
						|
p : degree of B-Spline
 | 
						|
U : knot vector
 | 
						|
P : control points (x, y, z, w)
 | 
						|
u : parametric point
 | 
						|
 | 
						|
returns point for given u
 | 
						|
*/
 | 
						|
function calcBSplinePoint( p, U, P, u ) {
 | 
						|
 | 
						|
	const span = findSpan( p, u, U );
 | 
						|
	const N = calcBasisFunctions( span, u, p, U );
 | 
						|
	const C = new Vector4( 0, 0, 0, 0 );
 | 
						|
 | 
						|
	for ( let j = 0; j <= p; ++ j ) {
 | 
						|
 | 
						|
		const point = P[ span - p + j ];
 | 
						|
		const Nj = N[ j ];
 | 
						|
		const wNj = point.w * Nj;
 | 
						|
		C.x += point.x * wNj;
 | 
						|
		C.y += point.y * wNj;
 | 
						|
		C.z += point.z * wNj;
 | 
						|
		C.w += point.w * Nj;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	return C;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
 | 
						|
 | 
						|
span : span in which u lies
 | 
						|
u    : parametric point
 | 
						|
p    : degree
 | 
						|
n    : number of derivatives to calculate
 | 
						|
U    : knot vector
 | 
						|
 | 
						|
returns array[n+1][p+1] with basis functions derivatives
 | 
						|
*/
 | 
						|
function calcBasisFunctionDerivatives( span, u, p, n, U ) {
 | 
						|
 | 
						|
	const zeroArr = [];
 | 
						|
	for ( let i = 0; i <= p; ++ i )
 | 
						|
		zeroArr[ i ] = 0.0;
 | 
						|
 | 
						|
	const ders = [];
 | 
						|
 | 
						|
	for ( let i = 0; i <= n; ++ i )
 | 
						|
		ders[ i ] = zeroArr.slice( 0 );
 | 
						|
 | 
						|
	const ndu = [];
 | 
						|
 | 
						|
	for ( let i = 0; i <= p; ++ i )
 | 
						|
		ndu[ i ] = zeroArr.slice( 0 );
 | 
						|
 | 
						|
	ndu[ 0 ][ 0 ] = 1.0;
 | 
						|
 | 
						|
	const left = zeroArr.slice( 0 );
 | 
						|
	const right = zeroArr.slice( 0 );
 | 
						|
 | 
						|
	for ( let j = 1; j <= p; ++ j ) {
 | 
						|
 | 
						|
		left[ j ] = u - U[ span + 1 - j ];
 | 
						|
		right[ j ] = U[ span + j ] - u;
 | 
						|
 | 
						|
		let saved = 0.0;
 | 
						|
 | 
						|
		for ( let r = 0; r < j; ++ r ) {
 | 
						|
 | 
						|
			const rv = right[ r + 1 ];
 | 
						|
			const lv = left[ j - r ];
 | 
						|
			ndu[ j ][ r ] = rv + lv;
 | 
						|
 | 
						|
			const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
 | 
						|
			ndu[ r ][ j ] = saved + rv * temp;
 | 
						|
			saved = lv * temp;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		ndu[ j ][ j ] = saved;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	for ( let j = 0; j <= p; ++ j ) {
 | 
						|
 | 
						|
		ders[ 0 ][ j ] = ndu[ j ][ p ];
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	for ( let r = 0; r <= p; ++ r ) {
 | 
						|
 | 
						|
		let s1 = 0;
 | 
						|
		let s2 = 1;
 | 
						|
 | 
						|
		const a = [];
 | 
						|
		for ( let i = 0; i <= p; ++ i ) {
 | 
						|
 | 
						|
			a[ i ] = zeroArr.slice( 0 );
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		a[ 0 ][ 0 ] = 1.0;
 | 
						|
 | 
						|
		for ( let k = 1; k <= n; ++ k ) {
 | 
						|
 | 
						|
			let d = 0.0;
 | 
						|
			const rk = r - k;
 | 
						|
			const pk = p - k;
 | 
						|
 | 
						|
			if ( r >= k ) {
 | 
						|
 | 
						|
				a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
 | 
						|
				d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			const j1 = ( rk >= - 1 ) ? 1 : - rk;
 | 
						|
			const j2 = ( r - 1 <= pk ) ? k - 1 : p - r;
 | 
						|
 | 
						|
			for ( let j = j1; j <= j2; ++ j ) {
 | 
						|
 | 
						|
				a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
 | 
						|
				d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			if ( r <= pk ) {
 | 
						|
 | 
						|
				a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
 | 
						|
				d += a[ s2 ][ k ] * ndu[ r ][ pk ];
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			ders[ k ][ r ] = d;
 | 
						|
 | 
						|
			const j = s1;
 | 
						|
			s1 = s2;
 | 
						|
			s2 = j;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	let r = p;
 | 
						|
 | 
						|
	for ( let k = 1; k <= n; ++ k ) {
 | 
						|
 | 
						|
		for ( let j = 0; j <= p; ++ j ) {
 | 
						|
 | 
						|
			ders[ k ][ j ] *= r;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		r *= p - k;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	return ders;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
	Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
 | 
						|
 | 
						|
	p  : degree
 | 
						|
	U  : knot vector
 | 
						|
	P  : control points
 | 
						|
	u  : Parametric points
 | 
						|
	nd : number of derivatives
 | 
						|
 | 
						|
	returns array[d+1] with derivatives
 | 
						|
	*/
 | 
						|
function calcBSplineDerivatives( p, U, P, u, nd ) {
 | 
						|
 | 
						|
	const du = nd < p ? nd : p;
 | 
						|
	const CK = [];
 | 
						|
	const span = findSpan( p, u, U );
 | 
						|
	const nders = calcBasisFunctionDerivatives( span, u, p, du, U );
 | 
						|
	const Pw = [];
 | 
						|
 | 
						|
	for ( let i = 0; i < P.length; ++ i ) {
 | 
						|
 | 
						|
		const point = P[ i ].clone();
 | 
						|
		const w = point.w;
 | 
						|
 | 
						|
		point.x *= w;
 | 
						|
		point.y *= w;
 | 
						|
		point.z *= w;
 | 
						|
 | 
						|
		Pw[ i ] = point;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	for ( let k = 0; k <= du; ++ k ) {
 | 
						|
 | 
						|
		const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
 | 
						|
 | 
						|
		for ( let j = 1; j <= p; ++ j ) {
 | 
						|
 | 
						|
			point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		CK[ k ] = point;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	for ( let k = du + 1; k <= nd + 1; ++ k ) {
 | 
						|
 | 
						|
		CK[ k ] = new Vector4( 0, 0, 0 );
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	return CK;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
Calculate "K over I"
 | 
						|
 | 
						|
returns k!/(i!(k-i)!)
 | 
						|
*/
 | 
						|
function calcKoverI( k, i ) {
 | 
						|
 | 
						|
	let nom = 1;
 | 
						|
 | 
						|
	for ( let j = 2; j <= k; ++ j ) {
 | 
						|
 | 
						|
		nom *= j;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	let denom = 1;
 | 
						|
 | 
						|
	for ( let j = 2; j <= i; ++ j ) {
 | 
						|
 | 
						|
		denom *= j;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	for ( let j = 2; j <= k - i; ++ j ) {
 | 
						|
 | 
						|
		denom *= j;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	return nom / denom;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
 | 
						|
 | 
						|
Pders : result of function calcBSplineDerivatives
 | 
						|
 | 
						|
returns array with derivatives for rational curve.
 | 
						|
*/
 | 
						|
function calcRationalCurveDerivatives( Pders ) {
 | 
						|
 | 
						|
	const nd = Pders.length;
 | 
						|
	const Aders = [];
 | 
						|
	const wders = [];
 | 
						|
 | 
						|
	for ( let i = 0; i < nd; ++ i ) {
 | 
						|
 | 
						|
		const point = Pders[ i ];
 | 
						|
		Aders[ i ] = new Vector3( point.x, point.y, point.z );
 | 
						|
		wders[ i ] = point.w;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	const CK = [];
 | 
						|
 | 
						|
	for ( let k = 0; k < nd; ++ k ) {
 | 
						|
 | 
						|
		const v = Aders[ k ].clone();
 | 
						|
 | 
						|
		for ( let i = 1; i <= k; ++ i ) {
 | 
						|
 | 
						|
			v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) );
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		CK[ k ] = v.divideScalar( wders[ 0 ] );
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	return CK;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
 | 
						|
 | 
						|
p  : degree
 | 
						|
U  : knot vector
 | 
						|
P  : control points in homogeneous space
 | 
						|
u  : parametric points
 | 
						|
nd : number of derivatives
 | 
						|
 | 
						|
returns array with derivatives.
 | 
						|
*/
 | 
						|
function calcNURBSDerivatives( p, U, P, u, nd ) {
 | 
						|
 | 
						|
	const Pders = calcBSplineDerivatives( p, U, P, u, nd );
 | 
						|
	return calcRationalCurveDerivatives( Pders );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
 | 
						|
 | 
						|
p, q : degrees of B-Spline surface
 | 
						|
U, V : knot vectors
 | 
						|
P    : control points (x, y, z, w)
 | 
						|
u, v : parametric values
 | 
						|
 | 
						|
returns point for given (u, v)
 | 
						|
*/
 | 
						|
function calcSurfacePoint( p, q, U, V, P, u, v, target ) {
 | 
						|
 | 
						|
	const uspan = findSpan( p, u, U );
 | 
						|
	const vspan = findSpan( q, v, V );
 | 
						|
	const Nu = calcBasisFunctions( uspan, u, p, U );
 | 
						|
	const Nv = calcBasisFunctions( vspan, v, q, V );
 | 
						|
	const temp = [];
 | 
						|
 | 
						|
	for ( let l = 0; l <= q; ++ l ) {
 | 
						|
 | 
						|
		temp[ l ] = new Vector4( 0, 0, 0, 0 );
 | 
						|
		for ( let k = 0; k <= p; ++ k ) {
 | 
						|
 | 
						|
			const point = P[ uspan - p + k ][ vspan - q + l ].clone();
 | 
						|
			const w = point.w;
 | 
						|
			point.x *= w;
 | 
						|
			point.y *= w;
 | 
						|
			point.z *= w;
 | 
						|
			temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	const Sw = new Vector4( 0, 0, 0, 0 );
 | 
						|
	for ( let l = 0; l <= q; ++ l ) {
 | 
						|
 | 
						|
		Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	Sw.divideScalar( Sw.w );
 | 
						|
	target.set( Sw.x, Sw.y, Sw.z );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Calculate rational B-Spline volume point. See The NURBS Book, page 134, algorithm A4.3.
 | 
						|
 | 
						|
p, q, r   : degrees of B-Splinevolume
 | 
						|
U, V, W   : knot vectors
 | 
						|
P         : control points (x, y, z, w)
 | 
						|
u, v, w   : parametric values
 | 
						|
 | 
						|
returns point for given (u, v, w)
 | 
						|
*/
 | 
						|
function calcVolumePoint( p, q, r, U, V, W, P, u, v, w, target ) {
 | 
						|
 | 
						|
	const uspan = findSpan( p, u, U );
 | 
						|
	const vspan = findSpan( q, v, V );
 | 
						|
	const wspan = findSpan( r, w, W );
 | 
						|
	const Nu = calcBasisFunctions( uspan, u, p, U );
 | 
						|
	const Nv = calcBasisFunctions( vspan, v, q, V );
 | 
						|
	const Nw = calcBasisFunctions( wspan, w, r, W );
 | 
						|
	const temp = [];
 | 
						|
 | 
						|
	for ( let m = 0; m <= r; ++ m ) {
 | 
						|
 | 
						|
		temp[ m ] = [];
 | 
						|
 | 
						|
		for ( let l = 0; l <= q; ++ l ) {
 | 
						|
 | 
						|
			temp[ m ][ l ] = new Vector4( 0, 0, 0, 0 );
 | 
						|
			for ( let k = 0; k <= p; ++ k ) {
 | 
						|
 | 
						|
				const point = P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone();
 | 
						|
				const w = point.w;
 | 
						|
				point.x *= w;
 | 
						|
				point.y *= w;
 | 
						|
				point.z *= w;
 | 
						|
				temp[ m ][ l ].add( point.multiplyScalar( Nu[ k ] ) );
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	const Sw = new Vector4( 0, 0, 0, 0 );
 | 
						|
	for ( let m = 0; m <= r; ++ m ) {
 | 
						|
		for ( let l = 0; l <= q; ++ l ) {
 | 
						|
 | 
						|
			Sw.add( temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar( Nv[ l ] ) );
 | 
						|
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	Sw.divideScalar( Sw.w );
 | 
						|
	target.set( Sw.x, Sw.y, Sw.z );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
export {
 | 
						|
	findSpan,
 | 
						|
	calcBasisFunctions,
 | 
						|
	calcBSplinePoint,
 | 
						|
	calcBasisFunctionDerivatives,
 | 
						|
	calcBSplineDerivatives,
 | 
						|
	calcKoverI,
 | 
						|
	calcRationalCurveDerivatives,
 | 
						|
	calcNURBSDerivatives,
 | 
						|
	calcSurfacePoint,
 | 
						|
	calcVolumePoint,
 | 
						|
};
 |