145 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			145 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| import { MeshPhysicalMaterial } from 'three';
 | |
| 
 | |
| /**
 | |
|  * The aim of this mesh material is to use information from a post processing pass in the diffuse color pass.
 | |
|  * This material is based on the MeshPhysicalMaterial.
 | |
|  *
 | |
|  * In the current state, only the information of a screen space AO pass can be used in the material.
 | |
|  * Actually, the output of any screen space AO (SSAO, GTAO) can be used,
 | |
|  * as it is only necessary to provide the AO in one color channel of a texture,
 | |
|  * however the AO pass must be rendered prior to the color pass,
 | |
|  * which makes the post-processing pass somewhat of a pre-processing pass.
 | |
|  * Fot this purpose a new map (`aoPassMap`) is added to the material.
 | |
|  * The value of the map is used the same way as the `aoMap` value.
 | |
|  *
 | |
|  * Motivation to use the outputs AO pass directly in the material:
 | |
|  * The incident light of a fragment is composed of ambient light, direct light and indirect light
 | |
|  * Ambient Occlusion only occludes ambient light and environment light, but not direct light.
 | |
|  * Direct light is only occluded by geometry that casts shadows.
 | |
|  * And of course the emitted light should not be darkened by ambient occlusion either.
 | |
|  * This cannot be achieved if the AO post processing pass is simply blended with the diffuse render pass.
 | |
|  *
 | |
|  * Further extension work might be to use the output of an SSR pass or an HBIL pass from a previous frame.
 | |
|  * This would then create the possibility of SSR and IR depending on material properties such as `roughness`, `metalness` and `reflectivity`.
 | |
| **/
 | |
| 
 | |
| class MeshPostProcessingMaterial extends MeshPhysicalMaterial {
 | |
| 
 | |
| 	constructor( parameters ) {
 | |
| 
 | |
| 		const aoPassMap = parameters.aoPassMap;
 | |
| 		const aoPassMapScale = parameters.aoPassMapScale || 1.0;
 | |
| 		delete parameters.aoPassMap;
 | |
| 		delete parameters.aoPassMapScale;
 | |
| 
 | |
| 		super( parameters );
 | |
| 
 | |
| 		this.onBeforeCompile = this._onBeforeCompile;
 | |
| 		this.customProgramCacheKey = this._customProgramCacheKey;
 | |
| 		this._aoPassMap = aoPassMap;
 | |
| 		this.aoPassMapScale = aoPassMapScale;
 | |
| 		this._shader = null;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	get aoPassMap() {
 | |
| 
 | |
| 		return this._aoPassMap;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	set aoPassMap( aoPassMap ) {
 | |
| 
 | |
| 		this._aoPassMap = aoPassMap;
 | |
| 		this.needsUpdate = true;
 | |
| 		this._setUniforms();
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_customProgramCacheKey() {
 | |
| 
 | |
| 		return this._aoPassMap !== undefined && this._aoPassMap !== null ? 'aoPassMap' : '';
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_onBeforeCompile( shader ) {
 | |
| 
 | |
| 		this._shader = shader;
 | |
| 
 | |
| 		if ( this._aoPassMap !== undefined && this._aoPassMap !== null ) {
 | |
| 
 | |
| 			shader.fragmentShader = shader.fragmentShader.replace(
 | |
| 				'#include <aomap_pars_fragment>',
 | |
| 				aomap_pars_fragment_replacement
 | |
| 			);
 | |
| 			shader.fragmentShader = shader.fragmentShader.replace(
 | |
| 				'#include <aomap_fragment>',
 | |
| 				aomap_fragment_replacement
 | |
| 			);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		this._setUniforms();
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	_setUniforms() {
 | |
| 
 | |
| 		if ( this._shader ) {
 | |
| 
 | |
| 			this._shader.uniforms.tAoPassMap = { value: this._aoPassMap };
 | |
| 			this._shader.uniforms.aoPassMapScale = { value: this.aoPassMapScale };
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| const aomap_pars_fragment_replacement = /* glsl */`
 | |
| #ifdef USE_AOMAP
 | |
| 
 | |
| 	uniform sampler2D aoMap;
 | |
| 	uniform float aoMapIntensity;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 	uniform sampler2D tAoPassMap;
 | |
| 	uniform float aoPassMapScale;
 | |
| `;
 | |
| 
 | |
| const aomap_fragment_replacement = /* glsl */`
 | |
| #ifndef AOPASSMAP_SWIZZLE
 | |
| 	#define AOPASSMAP_SWIZZLE r
 | |
| #endif
 | |
| 	float ambientOcclusion = texelFetch( tAoPassMap, ivec2( gl_FragCoord.xy * aoPassMapScale ), 0 ).AOPASSMAP_SWIZZLE;
 | |
| 
 | |
| #ifdef USE_AOMAP
 | |
| 
 | |
| 	// reads channel R, compatible with a combined OcclusionRoughnessMetallic (RGB) texture
 | |
| 	ambientOcclusion = min( ambientOcclusion, texture2D( aoMap, vAoMapUv ).r );
 | |
| 	ambientOcclusion *= ( ambientOcclusion - 1.0 ) * aoMapIntensity + 1.0;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 	reflectedLight.indirectDiffuse *= ambientOcclusion;
 | |
| 
 | |
| 	#if defined( USE_CLEARCOAT ) 
 | |
| 		clearcoatSpecularIndirect *= ambientOcclusion;
 | |
| 	#endif
 | |
| 
 | |
| 	#if defined( USE_SHEEN ) 
 | |
| 		sheenSpecularIndirect *= ambientOcclusion;
 | |
| 	#endif
 | |
| 
 | |
| 	#if defined( USE_ENVMAP ) && defined( STANDARD )
 | |
| 
 | |
| 		float dotNV = saturate( dot( geometryNormal, geometryViewDir ) );
 | |
| 
 | |
| 		reflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );
 | |
| 
 | |
| 	#endif
 | |
| `;
 | |
| 
 | |
| export { MeshPostProcessingMaterial };
 |