201 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| /**
 | |
|  * SurfaceNets in JavaScript
 | |
|  *
 | |
|  * Written by Mikola Lysenko (C) 2012
 | |
|  *
 | |
|  * MIT License
 | |
|  *
 | |
|  * Based on: S.F. Gibson, 'Constrained Elastic Surface Nets'. (1998) MERL Tech Report.
 | |
|  * from https://github.com/mikolalysenko/isosurface/tree/master
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| let surfaceNet = ( dims, potential, bounds ) => {
 | |
| 		
 | |
| 	
 | |
| 	//Precompute edge table, like Paul Bourke does.
 | |
| 	// This saves a bit of time when computing the centroid of each boundary cell
 | |
| 	var cube_edges = new Int32Array(24) , edge_table = new Int32Array(256);
 | |
| 	(function() {
 | |
| 
 | |
| 		//Initialize the cube_edges table
 | |
| 		// This is just the vertex number of each cube
 | |
| 		var k = 0;
 | |
| 		for(var i=0; i<8; ++i) {
 | |
| 			for(var j=1; j<=4; j<<=1) {
 | |
| 				var p = i^j;
 | |
| 				if(i <= p) {
 | |
| 					cube_edges[k++] = i;
 | |
| 					cube_edges[k++] = p;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		//Initialize the intersection table.
 | |
| 		//  This is a 2^(cube configuration) ->  2^(edge configuration) map
 | |
| 		//  There is one entry for each possible cube configuration, and the output is a 12-bit vector enumerating all edges crossing the 0-level.
 | |
| 		for(var i=0; i<256; ++i) {
 | |
| 			var em = 0;
 | |
| 			for(var j=0; j<24; j+=2) {
 | |
| 				var a = !!(i & (1<<cube_edges[j]))
 | |
| 					, b = !!(i & (1<<cube_edges[j+1]));
 | |
| 				em |= a !== b ? (1 << (j >> 1)) : 0;
 | |
| 			}
 | |
| 			edge_table[i] = em;
 | |
| 		}
 | |
| 	})();
 | |
| 
 | |
| 	//Internal buffer, this may get resized at run time
 | |
| 	var buffer = new Array(4096);
 | |
| 	(function() {
 | |
| 		for(var i=0; i<buffer.length; ++i) {
 | |
| 			buffer[i] = 0;
 | |
| 		}
 | |
| 	})();
 | |
| 
 | |
| 	if(!bounds) {
 | |
| 		bounds = [[0,0,0],dims];
 | |
| 	}
 | |
| 	
 | |
| 	var scale     = [0,0,0];
 | |
| 	var shift     = [0,0,0];
 | |
| 	for(var i=0; i<3; ++i) {
 | |
| 		scale[i] = (bounds[1][i] - bounds[0][i]) / dims[i];
 | |
| 		shift[i] = bounds[0][i];
 | |
| 	}
 | |
| 	
 | |
| 	var vertices = []
 | |
| 		, faces = []
 | |
| 		, n = 0
 | |
| 		, x = [0, 0, 0]
 | |
| 		, R = [1, (dims[0]+1), (dims[0]+1)*(dims[1]+1)]
 | |
| 		, grid = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 | |
| 		, buf_no = 1;
 | |
| 	
 | |
| 		
 | |
| 	//Resize buffer if necessary 
 | |
| 	if(R[2] * 2 > buffer.length) {
 | |
| 		var ol = buffer.length;
 | |
| 		buffer.length = R[2] * 2;
 | |
| 		while(ol < buffer.length) {
 | |
| 			buffer[ol++] = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	//March over the voxel grid
 | |
| 	for(x[2]=0; x[2]<dims[2]-1; ++x[2], n+=dims[0], buf_no ^= 1, R[2]=-R[2]) {
 | |
| 	
 | |
| 		//m is the pointer into the buffer we are going to use.  
 | |
| 		//This is slightly obtuse because javascript does not have good support for packed data structures, so we must use typed arrays :(
 | |
| 		//The contents of the buffer will be the indices of the vertices on the previous x/y slice of the volume
 | |
| 		var m = 1 + (dims[0]+1) * (1 + buf_no * (dims[1]+1));
 | |
| 		
 | |
| 		for(x[1]=0; x[1]<dims[1]-1; ++x[1], ++n, m+=2)
 | |
| 		for(x[0]=0; x[0]<dims[0]-1; ++x[0], ++n, ++m) {
 | |
| 		
 | |
| 			//Read in 8 field values around this vertex and store them in an array
 | |
| 			//Also calculate 8-bit mask, like in marching cubes, so we can speed up sign checks later
 | |
| 			var mask = 0, g = 0;
 | |
| 			for(var k=0; k<2; ++k)
 | |
| 			for(var j=0; j<2; ++j)      
 | |
| 			for(var i=0; i<2; ++i, ++g) {
 | |
| 				var p = potential(
 | |
| 					scale[0]*(x[0]+i)+shift[0],
 | |
| 					scale[1]*(x[1]+j)+shift[1],
 | |
| 					scale[2]*(x[2]+k)+shift[2]);
 | |
| 				grid[g] = p;
 | |
| 				mask |= (p < 0) ? (1<<g) : 0;
 | |
| 			}
 | |
| 			
 | |
| 			//Check for early termination if cell does not intersect boundary
 | |
| 			if(mask === 0 || mask === 0xff) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			
 | |
| 			//Sum up edge intersections
 | |
| 			var edge_mask = edge_table[mask]
 | |
| 				, v = [0.0,0.0,0.0]
 | |
| 				, e_count = 0;
 | |
| 				
 | |
| 			//For every edge of the cube...
 | |
| 			for(var i=0; i<12; ++i) {
 | |
| 			
 | |
| 				//Use edge mask to check if it is crossed
 | |
| 				if(!(edge_mask & (1<<i))) {
 | |
| 					continue;
 | |
| 				}
 | |
| 				
 | |
| 				//If it did, increment number of edge crossings
 | |
| 				++e_count;
 | |
| 				
 | |
| 				//Now find the point of intersection
 | |
| 				var e0 = cube_edges[ i<<1 ]       //Unpack vertices
 | |
| 					, e1 = cube_edges[(i<<1)+1]
 | |
| 					, g0 = grid[e0]                 //Unpack grid values
 | |
| 					, g1 = grid[e1]
 | |
| 					, t  = g0 - g1;                 //Compute point of intersection
 | |
| 				if(Math.abs(t) > 1e-6) {
 | |
| 					t = g0 / t;
 | |
| 				} else {
 | |
| 					continue;
 | |
| 				}
 | |
| 				
 | |
| 				//Interpolate vertices and add up intersections (this can be done without multiplying)
 | |
| 				for(var j=0, k=1; j<3; ++j, k<<=1) {
 | |
| 					var a = e0 & k
 | |
| 						, b = e1 & k;
 | |
| 					if(a !== b) {
 | |
| 						v[j] += a ? 1.0 - t : t;
 | |
| 					} else {
 | |
| 						v[j] += a ? 1.0 : 0;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			
 | |
| 			//Now we just average the edge intersections and add them to coordinate
 | |
| 			var s = 1.0 / e_count;
 | |
| 			for(var i=0; i<3; ++i) {
 | |
| 				v[i] = scale[i] * (x[i] + s * v[i]) + shift[i];
 | |
| 			}
 | |
| 			
 | |
| 			//Add vertex to buffer, store pointer to vertex index in buffer
 | |
| 			buffer[m] = vertices.length;
 | |
| 			vertices.push(v);
 | |
| 			
 | |
| 			//Now we need to add faces together, to do this we just loop over 3 basis components
 | |
| 			for(var i=0; i<3; ++i) {
 | |
| 				//The first three entries of the edge_mask count the crossings along the edge
 | |
| 				if(!(edge_mask & (1<<i)) ) {
 | |
| 					continue;
 | |
| 				}
 | |
| 				
 | |
| 				// i = axes we are point along.  iu, iv = orthogonal axes
 | |
| 				var iu = (i+1)%3
 | |
| 					, iv = (i+2)%3;
 | |
| 					
 | |
| 				//If we are on a boundary, skip it
 | |
| 				if(x[iu] === 0 || x[iv] === 0) {
 | |
| 					continue;
 | |
| 				}
 | |
| 				
 | |
| 				//Otherwise, look up adjacent edges in buffer
 | |
| 				var du = R[iu]
 | |
| 					, dv = R[iv];
 | |
| 				
 | |
| 				//Remember to flip orientation depending on the sign of the corner.
 | |
| 				if(mask & 1) {
 | |
| 					faces.push([buffer[m],    buffer[m-du],    buffer[m-dv]]);
 | |
| 					faces.push([buffer[m-dv], buffer[m-du],    buffer[m-du-dv]]);
 | |
| 				} else {
 | |
| 					faces.push([buffer[m],    buffer[m-dv],    buffer[m-du]]);
 | |
| 					faces.push([buffer[m-du], buffer[m-dv],    buffer[m-du-dv]]);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	//All done!  Return the result
 | |
| 	return { positions: vertices, cells: faces };
 | |
| }
 | |
| 
 | |
| export { surfaceNet } |