441 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			441 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
import {
 | 
						|
	Camera,
 | 
						|
	ClampToEdgeWrapping,
 | 
						|
	DataTexture,
 | 
						|
	FloatType,
 | 
						|
	Mesh,
 | 
						|
	NearestFilter,
 | 
						|
	PlaneGeometry,
 | 
						|
	RGBAFormat,
 | 
						|
	Scene,
 | 
						|
	ShaderMaterial,
 | 
						|
	WebGLRenderTarget
 | 
						|
} from 'three';
 | 
						|
 | 
						|
/**
 | 
						|
 * GPUComputationRenderer, based on SimulationRenderer by zz85
 | 
						|
 *
 | 
						|
 * The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats
 | 
						|
 * for each compute element (texel)
 | 
						|
 *
 | 
						|
 * Each variable has a fragment shader that defines the computation made to obtain the variable in question.
 | 
						|
 * You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader
 | 
						|
 * (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.
 | 
						|
 *
 | 
						|
 * The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used
 | 
						|
 * as inputs to render the textures of the next frame.
 | 
						|
 *
 | 
						|
 * The render targets of the variables can be used as input textures for your visualization shaders.
 | 
						|
 *
 | 
						|
 * Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.
 | 
						|
 * a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...
 | 
						|
 *
 | 
						|
 * The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:
 | 
						|
 * #DEFINE resolution vec2( 1024.0, 1024.0 )
 | 
						|
 *
 | 
						|
 * -------------
 | 
						|
 *
 | 
						|
 * Basic use:
 | 
						|
 *
 | 
						|
 * // Initialization...
 | 
						|
 *
 | 
						|
 * // Create computation renderer
 | 
						|
 * const gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer );
 | 
						|
 *
 | 
						|
 * // Create initial state float textures
 | 
						|
 * const pos0 = gpuCompute.createTexture();
 | 
						|
 * const vel0 = gpuCompute.createTexture();
 | 
						|
 * // and fill in here the texture data...
 | 
						|
 *
 | 
						|
 * // Add texture variables
 | 
						|
 * const velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );
 | 
						|
 * const posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );
 | 
						|
 *
 | 
						|
 * // Add variable dependencies
 | 
						|
 * gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
 | 
						|
 * gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
 | 
						|
 *
 | 
						|
 * // Add custom uniforms
 | 
						|
 * velVar.material.uniforms.time = { value: 0.0 };
 | 
						|
 *
 | 
						|
 * // Check for completeness
 | 
						|
 * const error = gpuCompute.init();
 | 
						|
 * if ( error !== null ) {
 | 
						|
 *		console.error( error );
 | 
						|
  * }
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * // In each frame...
 | 
						|
 *
 | 
						|
 * // Compute!
 | 
						|
 * gpuCompute.compute();
 | 
						|
 *
 | 
						|
 * // Update texture uniforms in your visualization materials with the gpu renderer output
 | 
						|
 * myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
 | 
						|
 *
 | 
						|
 * // Do your rendering
 | 
						|
 * renderer.render( myScene, myCamera );
 | 
						|
 *
 | 
						|
 * -------------
 | 
						|
 *
 | 
						|
 * Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures)
 | 
						|
 * Note that the shaders can have multiple input textures.
 | 
						|
 *
 | 
						|
 * const myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } );
 | 
						|
 * const myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } );
 | 
						|
 *
 | 
						|
 * const inputTexture = gpuCompute.createTexture();
 | 
						|
 *
 | 
						|
 * // Fill in here inputTexture...
 | 
						|
 *
 | 
						|
 * myFilter1.uniforms.theTexture.value = inputTexture;
 | 
						|
 *
 | 
						|
 * const myRenderTarget = gpuCompute.createRenderTarget();
 | 
						|
 * myFilter2.uniforms.theTexture.value = myRenderTarget.texture;
 | 
						|
 *
 | 
						|
 * const outputRenderTarget = gpuCompute.createRenderTarget();
 | 
						|
 *
 | 
						|
 * // Now use the output texture where you want:
 | 
						|
 * myMaterial.uniforms.map.value = outputRenderTarget.texture;
 | 
						|
 *
 | 
						|
 * // And compute each frame, before rendering to screen:
 | 
						|
 * gpuCompute.doRenderTarget( myFilter1, myRenderTarget );
 | 
						|
 * gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );
 | 
						|
 *
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements.
 | 
						|
 * @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements.
 | 
						|
 * @param {WebGLRenderer} renderer The renderer
 | 
						|
  */
 | 
						|
 | 
						|
class GPUComputationRenderer {
 | 
						|
 | 
						|
	constructor( sizeX, sizeY, renderer ) {
 | 
						|
 | 
						|
		this.variables = [];
 | 
						|
 | 
						|
		this.currentTextureIndex = 0;
 | 
						|
 | 
						|
		let dataType = FloatType;
 | 
						|
 | 
						|
		const scene = new Scene();
 | 
						|
 | 
						|
		const camera = new Camera();
 | 
						|
		camera.position.z = 1;
 | 
						|
 | 
						|
		const passThruUniforms = {
 | 
						|
			passThruTexture: { value: null }
 | 
						|
		};
 | 
						|
 | 
						|
		const passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );
 | 
						|
 | 
						|
		const mesh = new Mesh( new PlaneGeometry( 2, 2 ), passThruShader );
 | 
						|
		scene.add( mesh );
 | 
						|
 | 
						|
 | 
						|
		this.setDataType = function ( type ) {
 | 
						|
 | 
						|
			dataType = type;
 | 
						|
			return this;
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) {
 | 
						|
 | 
						|
			const material = this.createShaderMaterial( computeFragmentShader );
 | 
						|
 | 
						|
			const variable = {
 | 
						|
				name: variableName,
 | 
						|
				initialValueTexture: initialValueTexture,
 | 
						|
				material: material,
 | 
						|
				dependencies: null,
 | 
						|
				renderTargets: [],
 | 
						|
				wrapS: null,
 | 
						|
				wrapT: null,
 | 
						|
				minFilter: NearestFilter,
 | 
						|
				magFilter: NearestFilter
 | 
						|
			};
 | 
						|
 | 
						|
			this.variables.push( variable );
 | 
						|
 | 
						|
			return variable;
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		this.setVariableDependencies = function ( variable, dependencies ) {
 | 
						|
 | 
						|
			variable.dependencies = dependencies;
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		this.init = function () {
 | 
						|
 | 
						|
			if ( renderer.capabilities.maxVertexTextures === 0 ) {
 | 
						|
 | 
						|
				return 'No support for vertex shader textures.';
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			for ( let i = 0; i < this.variables.length; i ++ ) {
 | 
						|
 | 
						|
				const variable = this.variables[ i ];
 | 
						|
 | 
						|
				// Creates rendertargets and initialize them with input texture
 | 
						|
				variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
 | 
						|
				variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
 | 
						|
				this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );
 | 
						|
				this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] );
 | 
						|
 | 
						|
				// Adds dependencies uniforms to the ShaderMaterial
 | 
						|
				const material = variable.material;
 | 
						|
				const uniforms = material.uniforms;
 | 
						|
 | 
						|
				if ( variable.dependencies !== null ) {
 | 
						|
 | 
						|
					for ( let d = 0; d < variable.dependencies.length; d ++ ) {
 | 
						|
 | 
						|
						const depVar = variable.dependencies[ d ];
 | 
						|
 | 
						|
						if ( depVar.name !== variable.name ) {
 | 
						|
 | 
						|
							// Checks if variable exists
 | 
						|
							let found = false;
 | 
						|
 | 
						|
							for ( let j = 0; j < this.variables.length; j ++ ) {
 | 
						|
 | 
						|
								if ( depVar.name === this.variables[ j ].name ) {
 | 
						|
 | 
						|
									found = true;
 | 
						|
									break;
 | 
						|
 | 
						|
								}
 | 
						|
 | 
						|
							}
 | 
						|
 | 
						|
							if ( ! found ) {
 | 
						|
 | 
						|
								return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name;
 | 
						|
 | 
						|
							}
 | 
						|
 | 
						|
						}
 | 
						|
 | 
						|
						uniforms[ depVar.name ] = { value: null };
 | 
						|
 | 
						|
						material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader;
 | 
						|
 | 
						|
					}
 | 
						|
 | 
						|
				}
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			this.currentTextureIndex = 0;
 | 
						|
 | 
						|
			return null;
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		this.compute = function () {
 | 
						|
 | 
						|
			const currentTextureIndex = this.currentTextureIndex;
 | 
						|
			const nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;
 | 
						|
 | 
						|
			for ( let i = 0, il = this.variables.length; i < il; i ++ ) {
 | 
						|
 | 
						|
				const variable = this.variables[ i ];
 | 
						|
 | 
						|
				// Sets texture dependencies uniforms
 | 
						|
				if ( variable.dependencies !== null ) {
 | 
						|
 | 
						|
					const uniforms = variable.material.uniforms;
 | 
						|
 | 
						|
					for ( let d = 0, dl = variable.dependencies.length; d < dl; d ++ ) {
 | 
						|
 | 
						|
						const depVar = variable.dependencies[ d ];
 | 
						|
 | 
						|
						uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;
 | 
						|
 | 
						|
					}
 | 
						|
 | 
						|
				}
 | 
						|
 | 
						|
				// Performs the computation for this variable
 | 
						|
				this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			this.currentTextureIndex = nextTextureIndex;
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		this.getCurrentRenderTarget = function ( variable ) {
 | 
						|
 | 
						|
			return variable.renderTargets[ this.currentTextureIndex ];
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		this.getAlternateRenderTarget = function ( variable ) {
 | 
						|
 | 
						|
			return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		this.dispose = function () {
 | 
						|
 | 
						|
			mesh.geometry.dispose();
 | 
						|
			mesh.material.dispose();
 | 
						|
 | 
						|
			const variables = this.variables;
 | 
						|
 | 
						|
			for ( let i = 0; i < variables.length; i ++ ) {
 | 
						|
 | 
						|
				const variable = variables[ i ];
 | 
						|
 | 
						|
				if ( variable.initialValueTexture ) variable.initialValueTexture.dispose();
 | 
						|
 | 
						|
				const renderTargets = variable.renderTargets;
 | 
						|
 | 
						|
				for ( let j = 0; j < renderTargets.length; j ++ ) {
 | 
						|
 | 
						|
					const renderTarget = renderTargets[ j ];
 | 
						|
					renderTarget.dispose();
 | 
						|
 | 
						|
				}
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		function addResolutionDefine( materialShader ) {
 | 
						|
 | 
						|
			materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )';
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		this.addResolutionDefine = addResolutionDefine;
 | 
						|
 | 
						|
 | 
						|
		// The following functions can be used to compute things manually
 | 
						|
 | 
						|
		function createShaderMaterial( computeFragmentShader, uniforms ) {
 | 
						|
 | 
						|
			uniforms = uniforms || {};
 | 
						|
 | 
						|
			const material = new ShaderMaterial( {
 | 
						|
				name: 'GPUComputationShader',
 | 
						|
				uniforms: uniforms,
 | 
						|
				vertexShader: getPassThroughVertexShader(),
 | 
						|
				fragmentShader: computeFragmentShader
 | 
						|
			} );
 | 
						|
 | 
						|
			addResolutionDefine( material );
 | 
						|
 | 
						|
			return material;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		this.createShaderMaterial = createShaderMaterial;
 | 
						|
 | 
						|
		this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {
 | 
						|
 | 
						|
			sizeXTexture = sizeXTexture || sizeX;
 | 
						|
			sizeYTexture = sizeYTexture || sizeY;
 | 
						|
 | 
						|
			wrapS = wrapS || ClampToEdgeWrapping;
 | 
						|
			wrapT = wrapT || ClampToEdgeWrapping;
 | 
						|
 | 
						|
			minFilter = minFilter || NearestFilter;
 | 
						|
			magFilter = magFilter || NearestFilter;
 | 
						|
 | 
						|
			const renderTarget = new WebGLRenderTarget( sizeXTexture, sizeYTexture, {
 | 
						|
				wrapS: wrapS,
 | 
						|
				wrapT: wrapT,
 | 
						|
				minFilter: minFilter,
 | 
						|
				magFilter: magFilter,
 | 
						|
				format: RGBAFormat,
 | 
						|
				type: dataType,
 | 
						|
				depthBuffer: false
 | 
						|
			} );
 | 
						|
 | 
						|
			return renderTarget;
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		this.createTexture = function () {
 | 
						|
 | 
						|
			const data = new Float32Array( sizeX * sizeY * 4 );
 | 
						|
			const texture = new DataTexture( data, sizeX, sizeY, RGBAFormat, FloatType );
 | 
						|
			texture.needsUpdate = true;
 | 
						|
			return texture;
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		this.renderTexture = function ( input, output ) {
 | 
						|
 | 
						|
			// Takes a texture, and render out in rendertarget
 | 
						|
			// input = Texture
 | 
						|
			// output = RenderTarget
 | 
						|
 | 
						|
			passThruUniforms.passThruTexture.value = input;
 | 
						|
 | 
						|
			this.doRenderTarget( passThruShader, output );
 | 
						|
 | 
						|
			passThruUniforms.passThruTexture.value = null;
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		this.doRenderTarget = function ( material, output ) {
 | 
						|
 | 
						|
			const currentRenderTarget = renderer.getRenderTarget();
 | 
						|
 | 
						|
			const currentXrEnabled = renderer.xr.enabled;
 | 
						|
			const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;
 | 
						|
 | 
						|
			renderer.xr.enabled = false; // Avoid camera modification
 | 
						|
			renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows
 | 
						|
			mesh.material = material;
 | 
						|
			renderer.setRenderTarget( output );
 | 
						|
			renderer.render( scene, camera );
 | 
						|
			mesh.material = passThruShader;
 | 
						|
 | 
						|
			renderer.xr.enabled = currentXrEnabled;
 | 
						|
			renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;
 | 
						|
 | 
						|
			renderer.setRenderTarget( currentRenderTarget );
 | 
						|
 | 
						|
		};
 | 
						|
 | 
						|
		// Shaders
 | 
						|
 | 
						|
		function getPassThroughVertexShader() {
 | 
						|
 | 
						|
			return	'void main()	{\n' +
 | 
						|
					'\n' +
 | 
						|
					'	gl_Position = vec4( position, 1.0 );\n' +
 | 
						|
					'\n' +
 | 
						|
					'}\n';
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		function getPassThroughFragmentShader() {
 | 
						|
 | 
						|
			return	'uniform sampler2D passThruTexture;\n' +
 | 
						|
					'\n' +
 | 
						|
					'void main() {\n' +
 | 
						|
					'\n' +
 | 
						|
					'	vec2 uv = gl_FragCoord.xy / resolution.xy;\n' +
 | 
						|
					'\n' +
 | 
						|
					'	gl_FragColor = texture2D( passThruTexture, uv );\n' +
 | 
						|
					'\n' +
 | 
						|
					'}\n';
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
export { GPUComputationRenderer };
 |