208 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			208 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| var P = {version: "1.0.0"}
 | |
| P.PlotUtils = {}, P.PlotUtils.distance = function (t, o) {
 | |
|     return Math.sqrt(Math.pow(t[0] - o[0], 2) + Math.pow(t[1] - o[1], 2))
 | |
| }, P.PlotUtils.wholeDistance = function (t) {
 | |
|     for (var o = 0, e = 0; e < t.length - 1; e++) o += P.PlotUtils.distance(t[e], t[e + 1]);
 | |
|     return o
 | |
| }, P.PlotUtils.getBaseLength = function (t) {
 | |
|     return Math.pow(P.PlotUtils.wholeDistance(t), .99)
 | |
| }, P.PlotUtils.mid = function (t, o) {
 | |
|     return [(t[0] + o[0]) / 2, (t[1] + o[1]) / 2]
 | |
| }, P.PlotUtils.getCircleCenterOfThreePoints = function (t, o, e) {
 | |
|     var r = [(t[0] + o[0]) / 2, (t[1] + o[1]) / 2],
 | |
|         n = [r[0] - t[1] + o[1], r[1] + t[0] - o[0]],
 | |
|         g = [(t[0] + e[0]) / 2, (t[1] + e[1]) / 2],
 | |
|         i = [g[0] - t[1] + e[1], g[1] + t[0] - e[0]];
 | |
|     return P.PlotUtils.getIntersectPoint(r, n, g, i)
 | |
| }, P.PlotUtils.getIntersectPoint = function (t, o, e, r) {
 | |
|     if (t[1] == o[1]) {
 | |
|         var n = (r[0] - e[0]) / (r[1] - e[1]),
 | |
|             g = n * (t[1] - e[1]) + e[0],
 | |
|             i = t[1];
 | |
|         return [g, i]
 | |
|     }
 | |
|     if (e[1] == r[1]) {
 | |
|         var s = (o[0] - t[0]) / (o[1] - t[1]);
 | |
|         return g = s * (e[1] - t[1]) + t[0], i = e[1], [g, i]
 | |
|     }
 | |
|     return s = (o[0] - t[0]) / (o[1] - t[1]), n = (r[0] - e[0]) / (r[1] - e[1]), i = (s * t[1] - t[0] - n * e[1] + e[0]) / (s - n), g = s * i - s * t[1] + t[0], [g, i]
 | |
| }, P.PlotUtils.getAzimuth = function (t, o) {
 | |
|     var e, r = Math.asin(Math.abs(o[1] - t[1]) / P.PlotUtils.distance(t, o));
 | |
|     return o[1] >= t[1] && o[0] >= t[0] ? e = r + Math.PI : o[1] >= t[1] && o[0] < t[0] ? e = P.Constants.TWO_PI - r : o[1] < t[1] && o[0] < t[0] ? e = r : o[1] < t[1] && o[0] >= t[0] && (e = Math.PI - r), e
 | |
| }, P.PlotUtils.getAngleOfThreePoints = function (t, o, e) {
 | |
|     var r = P.PlotUtils.getAzimuth(o, t) - P.PlotUtils.getAzimuth(o, e);
 | |
|     return 0 > r ? r + P.Constants.TWO_PI : r
 | |
| }, P.PlotUtils.isClockWise = function (t, o, e) {
 | |
|     return (e[1] - t[1]) * (o[0] - t[0]) > (o[1] - t[1]) * (e[0] - t[0])
 | |
| }, P.PlotUtils.getPointOnLine = function (t, o, e) {
 | |
|     var r = o[0] + t * (e[0] - o[0]),
 | |
|         n = o[1] + t * (e[1] - o[1]);
 | |
|     return [r, n]
 | |
| }, P.PlotUtils.getCubicValue = function (t, o, e, r, n) {
 | |
|     t = Math.max(Math.min(t, 1), 0);
 | |
|     var g = 1 - t,
 | |
|         i = t * t,
 | |
|         s = i * t,
 | |
|         a = g * g,
 | |
|         l = a * g,
 | |
|         u = l * o[0] + 3 * a * t * e[0] + 3 * g * i * r[0] + s * n[0],
 | |
|         c = l * o[1] + 3 * a * t * e[1] + 3 * g * i * r[1] + s * n[1];
 | |
|     return [u, c]
 | |
| }, P.PlotUtils.getThirdPoint = function (t, o, e, r, n) {
 | |
|     var g = P.PlotUtils.getAzimuth(t, o),
 | |
|         i = n ? g + e : g - e,
 | |
|         s = r * Math.cos(i),
 | |
|         a = r * Math.sin(i);
 | |
|     return [o[0] + s, o[1] + a]
 | |
| }, P.PlotUtils.getArcPoints = function (t, o, e, r) {
 | |
|     var n, g, i = [],
 | |
|         s = r - e;
 | |
|     s = 0 > s ? s + P.Constants.TWO_PI : s;
 | |
|     for (var a = 0; a <= P.Constants.FITTING_COUNT; a++) {
 | |
|         var l = e + s * a / P.Constants.FITTING_COUNT;
 | |
|         n = t[0] + o * Math.cos(l), g = t[1] + o * Math.sin(l), i.push([n, g])
 | |
|     }
 | |
|     return i
 | |
| }, P.PlotUtils.getBisectorNormals = function (t, o, e, r) {
 | |
|     var n = P.PlotUtils.getNormal(o, e, r),
 | |
|         g = Math.sqrt(n[0] * n[0] + n[1] * n[1]),
 | |
|         i = n[0] / g,
 | |
|         s = n[1] / g,
 | |
|         a = P.PlotUtils.distance(o, e),
 | |
|         l = P.PlotUtils.distance(e, r);
 | |
|     if (g > P.Constants.ZERO_TOLERANCE) if (P.PlotUtils.isClockWise(o, e, r)) {
 | |
|         var u = t * a,
 | |
|             c = e[0] - u * s,
 | |
|             p = e[1] + u * i,
 | |
|             h = [c, p];
 | |
|         u = t * l, c = e[0] + u * s, p = e[1] - u * i;
 | |
|         var d = [c, p]
 | |
|     } else u = t * a, c = e[0] + u * s, p = e[1] - u * i, h = [c, p], u = t * l, c = e[0] - u * s, p = e[1] + u * i, d = [c, p];
 | |
|     else c = e[0] + t * (o[0] - e[0]), p = e[1] + t * (o[1] - e[1]), h = [c, p], c = e[0] + t * (r[0] - e[0]), p = e[1] + t * (r[1] - e[1]), d = [c, p];
 | |
|     return [h, d]
 | |
| }, P.PlotUtils.getNormal = function (t, o, e) {
 | |
|     var r = t[0] - o[0],
 | |
|         n = t[1] - o[1],
 | |
|         g = Math.sqrt(r * r + n * n);
 | |
|     r /= g, n /= g;
 | |
|     var i = e[0] - o[0],
 | |
|         s = e[1] - o[1],
 | |
|         a = Math.sqrt(i * i + s * s);
 | |
|     i /= a, s /= a;
 | |
|     var l = r + i,
 | |
|         u = n + s;
 | |
|     return [l, u]
 | |
| }, P.PlotUtils.getCurvePoints = function (t, o) {
 | |
|     for (var e = P.PlotUtils.getLeftMostControlPoint(o), r = [e], n = 0; n < o.length - 2; n++) {
 | |
|         var g = o[n],
 | |
|             i = o[n + 1],
 | |
|             s = o[n + 2],
 | |
|             a = P.PlotUtils.getBisectorNormals(t, g, i, s);
 | |
|         r = r.concat(a)
 | |
|     }
 | |
|     var l = P.PlotUtils.getRightMostControlPoint(o);
 | |
|     r.push(l);
 | |
|     var u = [];
 | |
|     for (n = 0; n < o.length - 1; n++) {
 | |
|         g = o[n], i = o[n + 1], u.push(g);
 | |
|         for (var t = 0; t < P.Constants.FITTING_COUNT; t++) {
 | |
|             var c = P.PlotUtils.getCubicValue(t / P.Constants.FITTING_COUNT, g, r[2 * n], r[2 * n + 1], i);
 | |
|             u.push(c)
 | |
|         }
 | |
|         u.push(i)
 | |
|     }
 | |
|     return u
 | |
| }, P.PlotUtils.getLeftMostControlPoint = function (o) {
 | |
|     var e = o[0],
 | |
|         r = o[1],
 | |
|         n = o[2],
 | |
|         g = P.PlotUtils.getBisectorNormals(0, e, r, n),
 | |
|         i = g[0],
 | |
|         s = P.PlotUtils.getNormal(e, r, n),
 | |
|         a = Math.sqrt(s[0] * s[0] + s[1] * s[1]);
 | |
|     if (a > P.Constants.ZERO_TOLERANCE) var l = P.PlotUtils.mid(e, r),
 | |
|         u = e[0] - l[0],
 | |
|         c = e[1] - l[1],
 | |
|         p = P.PlotUtils.distance(e, r),
 | |
|         h = 2 / p,
 | |
|         d = -h * c,
 | |
|         f = h * u,
 | |
|         E = d * d - f * f,
 | |
|         v = 2 * d * f,
 | |
|         A = f * f - d * d,
 | |
|         _ = i[0] - l[0],
 | |
|         y = i[1] - l[1],
 | |
|         m = l[0] + E * _ + v * y,
 | |
|         O = l[1] + v * _ + A * y;
 | |
|     else m = e[0] + t * (r[0] - e[0]), O = e[1] + t * (r[1] - e[1]);
 | |
|     return [m, O]
 | |
| }, P.PlotUtils.getRightMostControlPoint = function (o) {
 | |
|     var e = o.length,
 | |
|         r = o[e - 3],
 | |
|         n = o[e - 2],
 | |
|         g = o[e - 1],
 | |
|         i = P.PlotUtils.getBisectorNormals(0, r, n, g),
 | |
|         s = i[1],
 | |
|         a = P.PlotUtils.getNormal(r, n, g),
 | |
|         l = Math.sqrt(a[0] * a[0] + a[1] * a[1]);
 | |
|     if (l > P.Constants.ZERO_TOLERANCE) var u = P.PlotUtils.mid(n, g),
 | |
|         c = g[0] - u[0],
 | |
|         p = g[1] - u[1],
 | |
|         h = P.PlotUtils.distance(n, g),
 | |
|         d = 2 / h,
 | |
|         f = -d * p,
 | |
|         E = d * c,
 | |
|         v = f * f - E * E,
 | |
|         A = 2 * f * E,
 | |
|         _ = E * E - f * f,
 | |
|         y = s[0] - u[0],
 | |
|         m = s[1] - u[1],
 | |
|         O = u[0] + v * y + A * m,
 | |
|         T = u[1] + A * y + _ * m;
 | |
|     else O = g[0] + t * (n[0] - g[0]), T = g[1] + t * (n[1] - g[1]);
 | |
|     return [O, T]
 | |
| }, P.PlotUtils.getBezierPoints = function (t) {
 | |
|     if (t.length <= 2) return t;
 | |
|     for (var o = [], e = t.length - 1, r = 0; 1 >= r; r += .01) {
 | |
|         for (var n = y = 0, g = 0; e >= g; g++) {
 | |
|             var i = P.PlotUtils.getBinomialFactor(e, g),
 | |
|                 s = Math.pow(r, g),
 | |
|                 a = Math.pow(1 - r, e - g);
 | |
|             n += i * s * a * t[g][0], y += i * s * a * t[g][1]
 | |
|         }
 | |
|         o.push([n, y])
 | |
|     }
 | |
|     return o.push(t[e]), o
 | |
| }, P.PlotUtils.getBinomialFactor = function (t, o) {
 | |
|     return P.PlotUtils.getFactorial(t) / (P.PlotUtils.getFactorial(o) * P.PlotUtils.getFactorial(t - o))
 | |
| }, P.PlotUtils.getFactorial = function (t) {
 | |
|     if (1 >= t) return 1;
 | |
|     if (2 == t) return 2;
 | |
|     if (3 == t) return 6;
 | |
|     if (4 == t) return 24;
 | |
|     if (5 == t) return 120;
 | |
|     for (var o = 1, e = 1; t >= e; e++) o *= e;
 | |
|     return o
 | |
| }, P.PlotUtils.getQBSplinePoints = function (t) {
 | |
|     if (t.length <= 2) return t;
 | |
|     var o = 2,
 | |
|         e = [],
 | |
|         r = t.length - o - 1;
 | |
|     e.push(t[0]);
 | |
|     for (var n = 0; r >= n; n++) for (var g = 0; 1 >= g; g += .05) {
 | |
|         for (var i = y = 0, s = 0; o >= s; s++) {
 | |
|             var a = P.PlotUtils.getQuadricBSplineFactor(s, g);
 | |
|             i += a * t[n + s][0], y += a * t[n + s][1]
 | |
|         }
 | |
|         e.push([i, y])
 | |
|     }
 | |
|     return e.push(t[t.length - 1]), e
 | |
| }, P.PlotUtils.getQuadricBSplineFactor = function (t, o) {
 | |
|     return 0 == t ? Math.pow(o - 1, 2) / 2 : 1 == t ? (-2 * Math.pow(o, 2) + 2 * o + 1) / 2 : 2 == t ? Math.pow(o, 2) / 2 : 0
 | |
| }, P.Constants = {
 | |
|     TWO_PI: 2 * Math.PI,
 | |
|     HALF_PI: Math.PI / 2,
 | |
|     FITTING_COUNT: 100,
 | |
|     ZERO_TOLERANCE: 1e-4
 | |
| }
 |