1272 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			1272 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
import {
 | 
						||
	Line3,
 | 
						||
	Plane,
 | 
						||
	Triangle,
 | 
						||
	Vector3
 | 
						||
} from 'three';
 | 
						||
 | 
						||
/**
 | 
						||
 * Ported from: https://github.com/maurizzzio/quickhull3d/ by Mauricio Poppe (https://github.com/maurizzzio)
 | 
						||
 */
 | 
						||
 | 
						||
const Visible = 0;
 | 
						||
const Deleted = 1;
 | 
						||
 | 
						||
const _v1 = new Vector3();
 | 
						||
const _line3 = new Line3();
 | 
						||
const _plane = new Plane();
 | 
						||
const _closestPoint = new Vector3();
 | 
						||
const _triangle = new Triangle();
 | 
						||
 | 
						||
class ConvexHull {
 | 
						||
 | 
						||
	constructor() {
 | 
						||
 | 
						||
		this.tolerance = - 1;
 | 
						||
 | 
						||
		this.faces = []; // the generated faces of the convex hull
 | 
						||
		this.newFaces = []; // this array holds the faces that are generated within a single iteration
 | 
						||
 | 
						||
		// the vertex lists work as follows:
 | 
						||
		//
 | 
						||
		// let 'a' and 'b' be 'Face' instances
 | 
						||
		// let 'v' be points wrapped as instance of 'Vertex'
 | 
						||
		//
 | 
						||
		//     [v, v, ..., v, v, v, ...]
 | 
						||
		//      ^             ^
 | 
						||
		//      |             |
 | 
						||
		//  a.outside     b.outside
 | 
						||
		//
 | 
						||
		this.assigned = new VertexList();
 | 
						||
		this.unassigned = new VertexList();
 | 
						||
 | 
						||
		this.vertices = []; 	// vertices of the hull (internal representation of given geometry data)
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	setFromPoints( points ) {
 | 
						||
 | 
						||
		// The algorithm needs at least four points.
 | 
						||
 | 
						||
		if ( points.length >= 4 ) {
 | 
						||
 | 
						||
			this.makeEmpty();
 | 
						||
 | 
						||
			for ( let i = 0, l = points.length; i < l; i ++ ) {
 | 
						||
 | 
						||
				this.vertices.push( new VertexNode( points[ i ] ) );
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
			this.compute();
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	setFromObject( object ) {
 | 
						||
 | 
						||
		const points = [];
 | 
						||
 | 
						||
		object.updateMatrixWorld( true );
 | 
						||
 | 
						||
		object.traverse( function ( node ) {
 | 
						||
 | 
						||
			const geometry = node.geometry;
 | 
						||
 | 
						||
			if ( geometry !== undefined ) {
 | 
						||
 | 
						||
				const attribute = geometry.attributes.position;
 | 
						||
 | 
						||
				if ( attribute !== undefined ) {
 | 
						||
 | 
						||
					for ( let i = 0, l = attribute.count; i < l; i ++ ) {
 | 
						||
 | 
						||
						const point = new Vector3();
 | 
						||
 | 
						||
						point.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );
 | 
						||
 | 
						||
						points.push( point );
 | 
						||
 | 
						||
					}
 | 
						||
 | 
						||
				}
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		} );
 | 
						||
 | 
						||
		return this.setFromPoints( points );
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	containsPoint( point ) {
 | 
						||
 | 
						||
		const faces = this.faces;
 | 
						||
 | 
						||
		for ( let i = 0, l = faces.length; i < l; i ++ ) {
 | 
						||
 | 
						||
			const face = faces[ i ];
 | 
						||
 | 
						||
			// compute signed distance and check on what half space the point lies
 | 
						||
 | 
						||
			if ( face.distanceToPoint( point ) > this.tolerance ) return false;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		return true;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	intersectRay( ray, target ) {
 | 
						||
 | 
						||
		// based on "Fast Ray-Convex Polyhedron Intersection" by Eric Haines, GRAPHICS GEMS II
 | 
						||
 | 
						||
		const faces = this.faces;
 | 
						||
 | 
						||
		let tNear = - Infinity;
 | 
						||
		let tFar = Infinity;
 | 
						||
 | 
						||
		for ( let i = 0, l = faces.length; i < l; i ++ ) {
 | 
						||
 | 
						||
			const face = faces[ i ];
 | 
						||
 | 
						||
			// interpret faces as planes for the further computation
 | 
						||
 | 
						||
			const vN = face.distanceToPoint( ray.origin );
 | 
						||
			const vD = face.normal.dot( ray.direction );
 | 
						||
 | 
						||
			// if the origin is on the positive side of a plane (so the plane can "see" the origin) and
 | 
						||
			// the ray is turned away or parallel to the plane, there is no intersection
 | 
						||
 | 
						||
			if ( vN > 0 && vD >= 0 ) return null;
 | 
						||
 | 
						||
			// compute the distance from the ray’s origin to the intersection with the plane
 | 
						||
 | 
						||
			const t = ( vD !== 0 ) ? ( - vN / vD ) : 0;
 | 
						||
 | 
						||
			// only proceed if the distance is positive. a negative distance means the intersection point
 | 
						||
			// lies "behind" the origin
 | 
						||
 | 
						||
			if ( t <= 0 ) continue;
 | 
						||
 | 
						||
			// now categorized plane as front-facing or back-facing
 | 
						||
 | 
						||
			if ( vD > 0 ) {
 | 
						||
 | 
						||
				// plane faces away from the ray, so this plane is a back-face
 | 
						||
 | 
						||
				tFar = Math.min( t, tFar );
 | 
						||
 | 
						||
			} else {
 | 
						||
 | 
						||
				// front-face
 | 
						||
 | 
						||
				tNear = Math.max( t, tNear );
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
			if ( tNear > tFar ) {
 | 
						||
 | 
						||
				// if tNear ever is greater than tFar, the ray must miss the convex hull
 | 
						||
 | 
						||
				return null;
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		// evaluate intersection point
 | 
						||
 | 
						||
		// always try tNear first since its the closer intersection point
 | 
						||
 | 
						||
		if ( tNear !== - Infinity ) {
 | 
						||
 | 
						||
			ray.at( tNear, target );
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			ray.at( tFar, target );
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		return target;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	intersectsRay( ray ) {
 | 
						||
 | 
						||
		return this.intersectRay( ray, _v1 ) !== null;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	makeEmpty() {
 | 
						||
 | 
						||
		this.faces = [];
 | 
						||
		this.vertices = [];
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Adds a vertex to the 'assigned' list of vertices and assigns it to the given face
 | 
						||
 | 
						||
	addVertexToFace( vertex, face ) {
 | 
						||
 | 
						||
		vertex.face = face;
 | 
						||
 | 
						||
		if ( face.outside === null ) {
 | 
						||
 | 
						||
			this.assigned.append( vertex );
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			this.assigned.insertBefore( face.outside, vertex );
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		face.outside = vertex;
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Removes a vertex from the 'assigned' list of vertices and from the given face
 | 
						||
 | 
						||
	removeVertexFromFace( vertex, face ) {
 | 
						||
 | 
						||
		if ( vertex === face.outside ) {
 | 
						||
 | 
						||
			// fix face.outside link
 | 
						||
 | 
						||
			if ( vertex.next !== null && vertex.next.face === face ) {
 | 
						||
 | 
						||
				// face has at least 2 outside vertices, move the 'outside' reference
 | 
						||
 | 
						||
				face.outside = vertex.next;
 | 
						||
 | 
						||
			} else {
 | 
						||
 | 
						||
				// vertex was the only outside vertex that face had
 | 
						||
 | 
						||
				face.outside = null;
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		this.assigned.remove( vertex );
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Removes all the visible vertices that a given face is able to see which are stored in the 'assigned' vertex list
 | 
						||
 | 
						||
	removeAllVerticesFromFace( face ) {
 | 
						||
 | 
						||
		if ( face.outside !== null ) {
 | 
						||
 | 
						||
			// reference to the first and last vertex of this face
 | 
						||
 | 
						||
			const start = face.outside;
 | 
						||
			let end = face.outside;
 | 
						||
 | 
						||
			while ( end.next !== null && end.next.face === face ) {
 | 
						||
 | 
						||
				end = end.next;
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
			this.assigned.removeSubList( start, end );
 | 
						||
 | 
						||
			// fix references
 | 
						||
 | 
						||
			start.prev = end.next = null;
 | 
						||
			face.outside = null;
 | 
						||
 | 
						||
			return start;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Removes all the visible vertices that 'face' is able to see
 | 
						||
 | 
						||
	deleteFaceVertices( face, absorbingFace ) {
 | 
						||
 | 
						||
		const faceVertices = this.removeAllVerticesFromFace( face );
 | 
						||
 | 
						||
		if ( faceVertices !== undefined ) {
 | 
						||
 | 
						||
			if ( absorbingFace === undefined ) {
 | 
						||
 | 
						||
				// mark the vertices to be reassigned to some other face
 | 
						||
 | 
						||
				this.unassigned.appendChain( faceVertices );
 | 
						||
 | 
						||
 | 
						||
			} else {
 | 
						||
 | 
						||
				// if there's an absorbing face try to assign as many vertices as possible to it
 | 
						||
 | 
						||
				let vertex = faceVertices;
 | 
						||
 | 
						||
				do {
 | 
						||
 | 
						||
					// we need to buffer the subsequent vertex at this point because the 'vertex.next' reference
 | 
						||
					// will be changed by upcoming method calls
 | 
						||
 | 
						||
					const nextVertex = vertex.next;
 | 
						||
 | 
						||
					const distance = absorbingFace.distanceToPoint( vertex.point );
 | 
						||
 | 
						||
					// check if 'vertex' is able to see 'absorbingFace'
 | 
						||
 | 
						||
					if ( distance > this.tolerance ) {
 | 
						||
 | 
						||
						this.addVertexToFace( vertex, absorbingFace );
 | 
						||
 | 
						||
					} else {
 | 
						||
 | 
						||
						this.unassigned.append( vertex );
 | 
						||
 | 
						||
					}
 | 
						||
 | 
						||
					// now assign next vertex
 | 
						||
 | 
						||
					vertex = nextVertex;
 | 
						||
 | 
						||
				} while ( vertex !== null );
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Reassigns as many vertices as possible from the unassigned list to the new faces
 | 
						||
 | 
						||
	resolveUnassignedPoints( newFaces ) {
 | 
						||
 | 
						||
		if ( this.unassigned.isEmpty() === false ) {
 | 
						||
 | 
						||
			let vertex = this.unassigned.first();
 | 
						||
 | 
						||
			do {
 | 
						||
 | 
						||
				// buffer 'next' reference, see .deleteFaceVertices()
 | 
						||
 | 
						||
				const nextVertex = vertex.next;
 | 
						||
 | 
						||
				let maxDistance = this.tolerance;
 | 
						||
 | 
						||
				let maxFace = null;
 | 
						||
 | 
						||
				for ( let i = 0; i < newFaces.length; i ++ ) {
 | 
						||
 | 
						||
					const face = newFaces[ i ];
 | 
						||
 | 
						||
					if ( face.mark === Visible ) {
 | 
						||
 | 
						||
						const distance = face.distanceToPoint( vertex.point );
 | 
						||
 | 
						||
						if ( distance > maxDistance ) {
 | 
						||
 | 
						||
							maxDistance = distance;
 | 
						||
							maxFace = face;
 | 
						||
 | 
						||
						}
 | 
						||
 | 
						||
						if ( maxDistance > 1000 * this.tolerance ) break;
 | 
						||
 | 
						||
					}
 | 
						||
 | 
						||
				}
 | 
						||
 | 
						||
				// 'maxFace' can be null e.g. if there are identical vertices
 | 
						||
 | 
						||
				if ( maxFace !== null ) {
 | 
						||
 | 
						||
					this.addVertexToFace( vertex, maxFace );
 | 
						||
 | 
						||
				}
 | 
						||
 | 
						||
				vertex = nextVertex;
 | 
						||
 | 
						||
			} while ( vertex !== null );
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Computes the extremes of a simplex which will be the initial hull
 | 
						||
 | 
						||
	computeExtremes() {
 | 
						||
 | 
						||
		const min = new Vector3();
 | 
						||
		const max = new Vector3();
 | 
						||
 | 
						||
		const minVertices = [];
 | 
						||
		const maxVertices = [];
 | 
						||
 | 
						||
		// initially assume that the first vertex is the min/max
 | 
						||
 | 
						||
		for ( let i = 0; i < 3; i ++ ) {
 | 
						||
 | 
						||
			minVertices[ i ] = maxVertices[ i ] = this.vertices[ 0 ];
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		min.copy( this.vertices[ 0 ].point );
 | 
						||
		max.copy( this.vertices[ 0 ].point );
 | 
						||
 | 
						||
		// compute the min/max vertex on all six directions
 | 
						||
 | 
						||
		for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
 | 
						||
 | 
						||
			const vertex = this.vertices[ i ];
 | 
						||
			const point = vertex.point;
 | 
						||
 | 
						||
			// update the min coordinates
 | 
						||
 | 
						||
			for ( let j = 0; j < 3; j ++ ) {
 | 
						||
 | 
						||
				if ( point.getComponent( j ) < min.getComponent( j ) ) {
 | 
						||
 | 
						||
					min.setComponent( j, point.getComponent( j ) );
 | 
						||
					minVertices[ j ] = vertex;
 | 
						||
 | 
						||
				}
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
			// update the max coordinates
 | 
						||
 | 
						||
			for ( let j = 0; j < 3; j ++ ) {
 | 
						||
 | 
						||
				if ( point.getComponent( j ) > max.getComponent( j ) ) {
 | 
						||
 | 
						||
					max.setComponent( j, point.getComponent( j ) );
 | 
						||
					maxVertices[ j ] = vertex;
 | 
						||
 | 
						||
				}
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		// use min/max vectors to compute an optimal epsilon
 | 
						||
 | 
						||
		this.tolerance = 3 * Number.EPSILON * (
 | 
						||
			Math.max( Math.abs( min.x ), Math.abs( max.x ) ) +
 | 
						||
			Math.max( Math.abs( min.y ), Math.abs( max.y ) ) +
 | 
						||
			Math.max( Math.abs( min.z ), Math.abs( max.z ) )
 | 
						||
		);
 | 
						||
 | 
						||
		return { min: minVertices, max: maxVertices };
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Computes the initial simplex assigning to its faces all the points
 | 
						||
	// that are candidates to form part of the hull
 | 
						||
 | 
						||
	computeInitialHull() {
 | 
						||
 | 
						||
		const vertices = this.vertices;
 | 
						||
		const extremes = this.computeExtremes();
 | 
						||
		const min = extremes.min;
 | 
						||
		const max = extremes.max;
 | 
						||
 | 
						||
		// 1. Find the two vertices 'v0' and 'v1' with the greatest 1d separation
 | 
						||
		// (max.x - min.x)
 | 
						||
		// (max.y - min.y)
 | 
						||
		// (max.z - min.z)
 | 
						||
 | 
						||
		let maxDistance = 0;
 | 
						||
		let index = 0;
 | 
						||
 | 
						||
		for ( let i = 0; i < 3; i ++ ) {
 | 
						||
 | 
						||
			const distance = max[ i ].point.getComponent( i ) - min[ i ].point.getComponent( i );
 | 
						||
 | 
						||
			if ( distance > maxDistance ) {
 | 
						||
 | 
						||
				maxDistance = distance;
 | 
						||
				index = i;
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		const v0 = min[ index ];
 | 
						||
		const v1 = max[ index ];
 | 
						||
		let v2;
 | 
						||
		let v3;
 | 
						||
 | 
						||
		// 2. The next vertex 'v2' is the one farthest to the line formed by 'v0' and 'v1'
 | 
						||
 | 
						||
		maxDistance = 0;
 | 
						||
		_line3.set( v0.point, v1.point );
 | 
						||
 | 
						||
		for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
 | 
						||
 | 
						||
			const vertex = vertices[ i ];
 | 
						||
 | 
						||
			if ( vertex !== v0 && vertex !== v1 ) {
 | 
						||
 | 
						||
				_line3.closestPointToPoint( vertex.point, true, _closestPoint );
 | 
						||
 | 
						||
				const distance = _closestPoint.distanceToSquared( vertex.point );
 | 
						||
 | 
						||
				if ( distance > maxDistance ) {
 | 
						||
 | 
						||
					maxDistance = distance;
 | 
						||
					v2 = vertex;
 | 
						||
 | 
						||
				}
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		// 3. The next vertex 'v3' is the one farthest to the plane 'v0', 'v1', 'v2'
 | 
						||
 | 
						||
		maxDistance = - 1;
 | 
						||
		_plane.setFromCoplanarPoints( v0.point, v1.point, v2.point );
 | 
						||
 | 
						||
		for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
 | 
						||
 | 
						||
			const vertex = vertices[ i ];
 | 
						||
 | 
						||
			if ( vertex !== v0 && vertex !== v1 && vertex !== v2 ) {
 | 
						||
 | 
						||
				const distance = Math.abs( _plane.distanceToPoint( vertex.point ) );
 | 
						||
 | 
						||
				if ( distance > maxDistance ) {
 | 
						||
 | 
						||
					maxDistance = distance;
 | 
						||
					v3 = vertex;
 | 
						||
 | 
						||
				}
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		const faces = [];
 | 
						||
 | 
						||
		if ( _plane.distanceToPoint( v3.point ) < 0 ) {
 | 
						||
 | 
						||
			// the face is not able to see the point so 'plane.normal' is pointing outside the tetrahedron
 | 
						||
 | 
						||
			faces.push(
 | 
						||
				Face.create( v0, v1, v2 ),
 | 
						||
				Face.create( v3, v1, v0 ),
 | 
						||
				Face.create( v3, v2, v1 ),
 | 
						||
				Face.create( v3, v0, v2 )
 | 
						||
			);
 | 
						||
 | 
						||
			// set the twin edge
 | 
						||
 | 
						||
			for ( let i = 0; i < 3; i ++ ) {
 | 
						||
 | 
						||
				const j = ( i + 1 ) % 3;
 | 
						||
 | 
						||
				// join face[ i ] i > 0, with the first face
 | 
						||
 | 
						||
				faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( j ) );
 | 
						||
 | 
						||
				// join face[ i ] with face[ i + 1 ], 1 <= i <= 3
 | 
						||
 | 
						||
				faces[ i + 1 ].getEdge( 1 ).setTwin( faces[ j + 1 ].getEdge( 0 ) );
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			// the face is able to see the point so 'plane.normal' is pointing inside the tetrahedron
 | 
						||
 | 
						||
			faces.push(
 | 
						||
				Face.create( v0, v2, v1 ),
 | 
						||
				Face.create( v3, v0, v1 ),
 | 
						||
				Face.create( v3, v1, v2 ),
 | 
						||
				Face.create( v3, v2, v0 )
 | 
						||
			);
 | 
						||
 | 
						||
			// set the twin edge
 | 
						||
 | 
						||
			for ( let i = 0; i < 3; i ++ ) {
 | 
						||
 | 
						||
				const j = ( i + 1 ) % 3;
 | 
						||
 | 
						||
				// join face[ i ] i > 0, with the first face
 | 
						||
 | 
						||
				faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( ( 3 - i ) % 3 ) );
 | 
						||
 | 
						||
				// join face[ i ] with face[ i + 1 ]
 | 
						||
 | 
						||
				faces[ i + 1 ].getEdge( 0 ).setTwin( faces[ j + 1 ].getEdge( 1 ) );
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		// the initial hull is the tetrahedron
 | 
						||
 | 
						||
		for ( let i = 0; i < 4; i ++ ) {
 | 
						||
 | 
						||
			this.faces.push( faces[ i ] );
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		// initial assignment of vertices to the faces of the tetrahedron
 | 
						||
 | 
						||
		for ( let i = 0, l = vertices.length; i < l; i ++ ) {
 | 
						||
 | 
						||
			const vertex = vertices[ i ];
 | 
						||
 | 
						||
			if ( vertex !== v0 && vertex !== v1 && vertex !== v2 && vertex !== v3 ) {
 | 
						||
 | 
						||
				maxDistance = this.tolerance;
 | 
						||
				let maxFace = null;
 | 
						||
 | 
						||
				for ( let j = 0; j < 4; j ++ ) {
 | 
						||
 | 
						||
					const distance = this.faces[ j ].distanceToPoint( vertex.point );
 | 
						||
 | 
						||
					if ( distance > maxDistance ) {
 | 
						||
 | 
						||
						maxDistance = distance;
 | 
						||
						maxFace = this.faces[ j ];
 | 
						||
 | 
						||
					}
 | 
						||
 | 
						||
				}
 | 
						||
 | 
						||
				if ( maxFace !== null ) {
 | 
						||
 | 
						||
					this.addVertexToFace( vertex, maxFace );
 | 
						||
 | 
						||
				}
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Removes inactive faces
 | 
						||
 | 
						||
	reindexFaces() {
 | 
						||
 | 
						||
		const activeFaces = [];
 | 
						||
 | 
						||
		for ( let i = 0; i < this.faces.length; i ++ ) {
 | 
						||
 | 
						||
			const face = this.faces[ i ];
 | 
						||
 | 
						||
			if ( face.mark === Visible ) {
 | 
						||
 | 
						||
				activeFaces.push( face );
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		this.faces = activeFaces;
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Finds the next vertex to create faces with the current hull
 | 
						||
 | 
						||
	nextVertexToAdd() {
 | 
						||
 | 
						||
		// if the 'assigned' list of vertices is empty, no vertices are left. return with 'undefined'
 | 
						||
 | 
						||
		if ( this.assigned.isEmpty() === false ) {
 | 
						||
 | 
						||
			let eyeVertex, maxDistance = 0;
 | 
						||
 | 
						||
			// grap the first available face and start with the first visible vertex of that face
 | 
						||
 | 
						||
			const eyeFace = this.assigned.first().face;
 | 
						||
			let vertex = eyeFace.outside;
 | 
						||
 | 
						||
			// now calculate the farthest vertex that face can see
 | 
						||
 | 
						||
			do {
 | 
						||
 | 
						||
				const distance = eyeFace.distanceToPoint( vertex.point );
 | 
						||
 | 
						||
				if ( distance > maxDistance ) {
 | 
						||
 | 
						||
					maxDistance = distance;
 | 
						||
					eyeVertex = vertex;
 | 
						||
 | 
						||
				}
 | 
						||
 | 
						||
				vertex = vertex.next;
 | 
						||
 | 
						||
			} while ( vertex !== null && vertex.face === eyeFace );
 | 
						||
 | 
						||
			return eyeVertex;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Computes a chain of half edges in CCW order called the 'horizon'.
 | 
						||
	// For an edge to be part of the horizon it must join a face that can see
 | 
						||
	// 'eyePoint' and a face that cannot see 'eyePoint'.
 | 
						||
 | 
						||
	computeHorizon( eyePoint, crossEdge, face, horizon ) {
 | 
						||
 | 
						||
		// moves face's vertices to the 'unassigned' vertex list
 | 
						||
 | 
						||
		this.deleteFaceVertices( face );
 | 
						||
 | 
						||
		face.mark = Deleted;
 | 
						||
 | 
						||
		let edge;
 | 
						||
 | 
						||
		if ( crossEdge === null ) {
 | 
						||
 | 
						||
			edge = crossEdge = face.getEdge( 0 );
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			// start from the next edge since 'crossEdge' was already analyzed
 | 
						||
			// (actually 'crossEdge.twin' was the edge who called this method recursively)
 | 
						||
 | 
						||
			edge = crossEdge.next;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		do {
 | 
						||
 | 
						||
			const twinEdge = edge.twin;
 | 
						||
			const oppositeFace = twinEdge.face;
 | 
						||
 | 
						||
			if ( oppositeFace.mark === Visible ) {
 | 
						||
 | 
						||
				if ( oppositeFace.distanceToPoint( eyePoint ) > this.tolerance ) {
 | 
						||
 | 
						||
					// the opposite face can see the vertex, so proceed with next edge
 | 
						||
 | 
						||
					this.computeHorizon( eyePoint, twinEdge, oppositeFace, horizon );
 | 
						||
 | 
						||
				} else {
 | 
						||
 | 
						||
					// the opposite face can't see the vertex, so this edge is part of the horizon
 | 
						||
 | 
						||
					horizon.push( edge );
 | 
						||
 | 
						||
				}
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
			edge = edge.next;
 | 
						||
 | 
						||
		} while ( edge !== crossEdge );
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Creates a face with the vertices 'eyeVertex.point', 'horizonEdge.tail' and 'horizonEdge.head' in CCW order
 | 
						||
 | 
						||
	addAdjoiningFace( eyeVertex, horizonEdge ) {
 | 
						||
 | 
						||
		// all the half edges are created in ccw order thus the face is always pointing outside the hull
 | 
						||
 | 
						||
		const face = Face.create( eyeVertex, horizonEdge.tail(), horizonEdge.head() );
 | 
						||
 | 
						||
		this.faces.push( face );
 | 
						||
 | 
						||
		// join face.getEdge( - 1 ) with the horizon's opposite edge face.getEdge( - 1 ) = face.getEdge( 2 )
 | 
						||
 | 
						||
		face.getEdge( - 1 ).setTwin( horizonEdge.twin );
 | 
						||
 | 
						||
		return face.getEdge( 0 ); // the half edge whose vertex is the eyeVertex
 | 
						||
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	//  Adds 'horizon.length' faces to the hull, each face will be linked with the
 | 
						||
	//  horizon opposite face and the face on the left/right
 | 
						||
 | 
						||
	addNewFaces( eyeVertex, horizon ) {
 | 
						||
 | 
						||
		this.newFaces = [];
 | 
						||
 | 
						||
		let firstSideEdge = null;
 | 
						||
		let previousSideEdge = null;
 | 
						||
 | 
						||
		for ( let i = 0; i < horizon.length; i ++ ) {
 | 
						||
 | 
						||
			const horizonEdge = horizon[ i ];
 | 
						||
 | 
						||
			// returns the right side edge
 | 
						||
 | 
						||
			const sideEdge = this.addAdjoiningFace( eyeVertex, horizonEdge );
 | 
						||
 | 
						||
			if ( firstSideEdge === null ) {
 | 
						||
 | 
						||
				firstSideEdge = sideEdge;
 | 
						||
 | 
						||
			} else {
 | 
						||
 | 
						||
				// joins face.getEdge( 1 ) with previousFace.getEdge( 0 )
 | 
						||
 | 
						||
				sideEdge.next.setTwin( previousSideEdge );
 | 
						||
 | 
						||
			}
 | 
						||
 | 
						||
			this.newFaces.push( sideEdge.face );
 | 
						||
			previousSideEdge = sideEdge;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		// perform final join of new faces
 | 
						||
 | 
						||
		firstSideEdge.next.setTwin( previousSideEdge );
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Adds a vertex to the hull
 | 
						||
 | 
						||
	addVertexToHull( eyeVertex ) {
 | 
						||
 | 
						||
		const horizon = [];
 | 
						||
 | 
						||
		this.unassigned.clear();
 | 
						||
 | 
						||
		// remove 'eyeVertex' from 'eyeVertex.face' so that it can't be added to the 'unassigned' vertex list
 | 
						||
 | 
						||
		this.removeVertexFromFace( eyeVertex, eyeVertex.face );
 | 
						||
 | 
						||
		this.computeHorizon( eyeVertex.point, null, eyeVertex.face, horizon );
 | 
						||
 | 
						||
		this.addNewFaces( eyeVertex, horizon );
 | 
						||
 | 
						||
		// reassign 'unassigned' vertices to the new faces
 | 
						||
 | 
						||
		this.resolveUnassignedPoints( this.newFaces );
 | 
						||
 | 
						||
		return	this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	cleanup() {
 | 
						||
 | 
						||
		this.assigned.clear();
 | 
						||
		this.unassigned.clear();
 | 
						||
		this.newFaces = [];
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	compute() {
 | 
						||
 | 
						||
		let vertex;
 | 
						||
 | 
						||
		this.computeInitialHull();
 | 
						||
 | 
						||
		// add all available vertices gradually to the hull
 | 
						||
 | 
						||
		while ( ( vertex = this.nextVertexToAdd() ) !== undefined ) {
 | 
						||
 | 
						||
			this.addVertexToHull( vertex );
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		this.reindexFaces();
 | 
						||
 | 
						||
		this.cleanup();
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
}
 | 
						||
 | 
						||
//
 | 
						||
 | 
						||
class Face {
 | 
						||
 | 
						||
	constructor() {
 | 
						||
 | 
						||
		this.normal = new Vector3();
 | 
						||
		this.midpoint = new Vector3();
 | 
						||
		this.area = 0;
 | 
						||
 | 
						||
		this.constant = 0; // signed distance from face to the origin
 | 
						||
		this.outside = null; // reference to a vertex in a vertex list this face can see
 | 
						||
		this.mark = Visible;
 | 
						||
		this.edge = null;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	static create( a, b, c ) {
 | 
						||
 | 
						||
		const face = new Face();
 | 
						||
 | 
						||
		const e0 = new HalfEdge( a, face );
 | 
						||
		const e1 = new HalfEdge( b, face );
 | 
						||
		const e2 = new HalfEdge( c, face );
 | 
						||
 | 
						||
		// join edges
 | 
						||
 | 
						||
		e0.next = e2.prev = e1;
 | 
						||
		e1.next = e0.prev = e2;
 | 
						||
		e2.next = e1.prev = e0;
 | 
						||
 | 
						||
		// main half edge reference
 | 
						||
 | 
						||
		face.edge = e0;
 | 
						||
 | 
						||
		return face.compute();
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	getEdge( i ) {
 | 
						||
 | 
						||
		let edge = this.edge;
 | 
						||
 | 
						||
		while ( i > 0 ) {
 | 
						||
 | 
						||
			edge = edge.next;
 | 
						||
			i --;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		while ( i < 0 ) {
 | 
						||
 | 
						||
			edge = edge.prev;
 | 
						||
			i ++;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		return edge;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	compute() {
 | 
						||
 | 
						||
		const a = this.edge.tail();
 | 
						||
		const b = this.edge.head();
 | 
						||
		const c = this.edge.next.head();
 | 
						||
 | 
						||
		_triangle.set( a.point, b.point, c.point );
 | 
						||
 | 
						||
		_triangle.getNormal( this.normal );
 | 
						||
		_triangle.getMidpoint( this.midpoint );
 | 
						||
		this.area = _triangle.getArea();
 | 
						||
 | 
						||
		this.constant = this.normal.dot( this.midpoint );
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	distanceToPoint( point ) {
 | 
						||
 | 
						||
		return this.normal.dot( point ) - this.constant;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
}
 | 
						||
 | 
						||
// Entity for a Doubly-Connected Edge List (DCEL).
 | 
						||
 | 
						||
class HalfEdge {
 | 
						||
 | 
						||
 | 
						||
	constructor( vertex, face ) {
 | 
						||
 | 
						||
		this.vertex = vertex;
 | 
						||
		this.prev = null;
 | 
						||
		this.next = null;
 | 
						||
		this.twin = null;
 | 
						||
		this.face = face;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	head() {
 | 
						||
 | 
						||
		return this.vertex;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	tail() {
 | 
						||
 | 
						||
		return this.prev ? this.prev.vertex : null;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	length() {
 | 
						||
 | 
						||
		const head = this.head();
 | 
						||
		const tail = this.tail();
 | 
						||
 | 
						||
		if ( tail !== null ) {
 | 
						||
 | 
						||
			return tail.point.distanceTo( head.point );
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		return - 1;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	lengthSquared() {
 | 
						||
 | 
						||
		const head = this.head();
 | 
						||
		const tail = this.tail();
 | 
						||
 | 
						||
		if ( tail !== null ) {
 | 
						||
 | 
						||
			return tail.point.distanceToSquared( head.point );
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		return - 1;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	setTwin( edge ) {
 | 
						||
 | 
						||
		this.twin = edge;
 | 
						||
		edge.twin = this;
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
}
 | 
						||
 | 
						||
// A vertex as a double linked list node.
 | 
						||
 | 
						||
class VertexNode {
 | 
						||
 | 
						||
	constructor( point ) {
 | 
						||
 | 
						||
		this.point = point;
 | 
						||
		this.prev = null;
 | 
						||
		this.next = null;
 | 
						||
		this.face = null; // the face that is able to see this vertex
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
}
 | 
						||
 | 
						||
// A double linked list that contains vertex nodes.
 | 
						||
 | 
						||
class VertexList {
 | 
						||
 | 
						||
	constructor() {
 | 
						||
 | 
						||
		this.head = null;
 | 
						||
		this.tail = null;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	first() {
 | 
						||
 | 
						||
		return this.head;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	last() {
 | 
						||
 | 
						||
		return this.tail;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	clear() {
 | 
						||
 | 
						||
		this.head = this.tail = null;
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Inserts a vertex before the target vertex
 | 
						||
 | 
						||
	insertBefore( target, vertex ) {
 | 
						||
 | 
						||
		vertex.prev = target.prev;
 | 
						||
		vertex.next = target;
 | 
						||
 | 
						||
		if ( vertex.prev === null ) {
 | 
						||
 | 
						||
			this.head = vertex;
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			vertex.prev.next = vertex;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		target.prev = vertex;
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Inserts a vertex after the target vertex
 | 
						||
 | 
						||
	insertAfter( target, vertex ) {
 | 
						||
 | 
						||
		vertex.prev = target;
 | 
						||
		vertex.next = target.next;
 | 
						||
 | 
						||
		if ( vertex.next === null ) {
 | 
						||
 | 
						||
			this.tail = vertex;
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			vertex.next.prev = vertex;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		target.next = vertex;
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Appends a vertex to the end of the linked list
 | 
						||
 | 
						||
	append( vertex ) {
 | 
						||
 | 
						||
		if ( this.head === null ) {
 | 
						||
 | 
						||
			this.head = vertex;
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			this.tail.next = vertex;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		vertex.prev = this.tail;
 | 
						||
		vertex.next = null; // the tail has no subsequent vertex
 | 
						||
 | 
						||
		this.tail = vertex;
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Appends a chain of vertices where 'vertex' is the head.
 | 
						||
 | 
						||
	appendChain( vertex ) {
 | 
						||
 | 
						||
		if ( this.head === null ) {
 | 
						||
 | 
						||
			this.head = vertex;
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			this.tail.next = vertex;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		vertex.prev = this.tail;
 | 
						||
 | 
						||
		// ensure that the 'tail' reference points to the last vertex of the chain
 | 
						||
 | 
						||
		while ( vertex.next !== null ) {
 | 
						||
 | 
						||
			vertex = vertex.next;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		this.tail = vertex;
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Removes a vertex from the linked list
 | 
						||
 | 
						||
	remove( vertex ) {
 | 
						||
 | 
						||
		if ( vertex.prev === null ) {
 | 
						||
 | 
						||
			this.head = vertex.next;
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			vertex.prev.next = vertex.next;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		if ( vertex.next === null ) {
 | 
						||
 | 
						||
			this.tail = vertex.prev;
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			vertex.next.prev = vertex.prev;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	// Removes a list of vertices whose 'head' is 'a' and whose 'tail' is b
 | 
						||
 | 
						||
	removeSubList( a, b ) {
 | 
						||
 | 
						||
		if ( a.prev === null ) {
 | 
						||
 | 
						||
			this.head = b.next;
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			a.prev.next = b.next;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		if ( b.next === null ) {
 | 
						||
 | 
						||
			this.tail = a.prev;
 | 
						||
 | 
						||
		} else {
 | 
						||
 | 
						||
			b.next.prev = a.prev;
 | 
						||
 | 
						||
		}
 | 
						||
 | 
						||
		return this;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
	isEmpty() {
 | 
						||
 | 
						||
		return this.head === null;
 | 
						||
 | 
						||
	}
 | 
						||
 | 
						||
}
 | 
						||
 | 
						||
export { ConvexHull, Face, HalfEdge, VertexNode, VertexList };
 |