104 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| import {
 | |
| 	Vector2
 | |
| } from 'three';
 | |
| 
 | |
| /**
 | |
|  * Convolution shader
 | |
|  * ported from o3d sample to WebGL / GLSL
 | |
|  */
 | |
| 
 | |
| const ConvolutionShader = {
 | |
| 
 | |
| 	name: 'ConvolutionShader',
 | |
| 
 | |
| 	defines: {
 | |
| 
 | |
| 		'KERNEL_SIZE_FLOAT': '25.0',
 | |
| 		'KERNEL_SIZE_INT': '25'
 | |
| 
 | |
| 	},
 | |
| 
 | |
| 	uniforms: {
 | |
| 
 | |
| 		'tDiffuse': { value: null },
 | |
| 		'uImageIncrement': { value: new Vector2( 0.001953125, 0.0 ) },
 | |
| 		'cKernel': { value: [] }
 | |
| 
 | |
| 	},
 | |
| 
 | |
| 	vertexShader: /* glsl */`
 | |
| 
 | |
| 		uniform vec2 uImageIncrement;
 | |
| 
 | |
| 		varying vec2 vUv;
 | |
| 
 | |
| 		void main() {
 | |
| 
 | |
| 			vUv = uv - ( ( KERNEL_SIZE_FLOAT - 1.0 ) / 2.0 ) * uImageIncrement;
 | |
| 			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
 | |
| 
 | |
| 		}`,
 | |
| 
 | |
| 	fragmentShader: /* glsl */`
 | |
| 
 | |
| 		uniform float cKernel[ KERNEL_SIZE_INT ];
 | |
| 
 | |
| 		uniform sampler2D tDiffuse;
 | |
| 		uniform vec2 uImageIncrement;
 | |
| 
 | |
| 		varying vec2 vUv;
 | |
| 
 | |
| 		void main() {
 | |
| 
 | |
| 			vec2 imageCoord = vUv;
 | |
| 			vec4 sum = vec4( 0.0, 0.0, 0.0, 0.0 );
 | |
| 
 | |
| 			for( int i = 0; i < KERNEL_SIZE_INT; i ++ ) {
 | |
| 
 | |
| 				sum += texture2D( tDiffuse, imageCoord ) * cKernel[ i ];
 | |
| 				imageCoord += uImageIncrement;
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 			gl_FragColor = sum;
 | |
| 
 | |
| 		}`,
 | |
| 
 | |
| 	buildKernel: function ( sigma ) {
 | |
| 
 | |
| 		// We lop off the sqrt(2 * pi) * sigma term, since we're going to normalize anyway.
 | |
| 
 | |
| 		const kMaxKernelSize = 25;
 | |
| 		let kernelSize = 2 * Math.ceil( sigma * 3.0 ) + 1;
 | |
| 
 | |
| 		if ( kernelSize > kMaxKernelSize ) kernelSize = kMaxKernelSize;
 | |
| 
 | |
| 		const halfWidth = ( kernelSize - 1 ) * 0.5;
 | |
| 
 | |
| 		const values = new Array( kernelSize );
 | |
| 		let sum = 0.0;
 | |
| 		for ( let i = 0; i < kernelSize; ++ i ) {
 | |
| 
 | |
| 			values[ i ] = gauss( i - halfWidth, sigma );
 | |
| 			sum += values[ i ];
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		// normalize the kernel
 | |
| 
 | |
| 		for ( let i = 0; i < kernelSize; ++ i ) values[ i ] /= sum;
 | |
| 
 | |
| 		return values;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| };
 | |
| 
 | |
| function gauss( x, sigma ) {
 | |
| 
 | |
| 	return Math.exp( - ( x * x ) / ( 2.0 * sigma * sigma ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| export { ConvolutionShader };
 |