424 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			424 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| import {
 | |
| 	Box3,
 | |
| 	MathUtils,
 | |
| 	Matrix4,
 | |
| 	Matrix3,
 | |
| 	Ray,
 | |
| 	Vector3
 | |
| } from 'three';
 | |
| 
 | |
| // module scope helper variables
 | |
| 
 | |
| const a = {
 | |
| 	c: null, // center
 | |
| 	u: [ new Vector3(), new Vector3(), new Vector3() ], // basis vectors
 | |
| 	e: [] // half width
 | |
| };
 | |
| 
 | |
| const b = {
 | |
| 	c: null, // center
 | |
| 	u: [ new Vector3(), new Vector3(), new Vector3() ], // basis vectors
 | |
| 	e: [] // half width
 | |
| };
 | |
| 
 | |
| const R = [[], [], []];
 | |
| const AbsR = [[], [], []];
 | |
| const t = [];
 | |
| 
 | |
| const xAxis = new Vector3();
 | |
| const yAxis = new Vector3();
 | |
| const zAxis = new Vector3();
 | |
| const v1 = new Vector3();
 | |
| const size = new Vector3();
 | |
| const closestPoint = new Vector3();
 | |
| const rotationMatrix = new Matrix3();
 | |
| const aabb = new Box3();
 | |
| const matrix = new Matrix4();
 | |
| const inverse = new Matrix4();
 | |
| const localRay = new Ray();
 | |
| 
 | |
| // OBB
 | |
| 
 | |
| class OBB {
 | |
| 
 | |
| 	constructor( center = new Vector3(), halfSize = new Vector3(), rotation = new Matrix3() ) {
 | |
| 
 | |
| 		this.center = center;
 | |
| 		this.halfSize = halfSize;
 | |
| 		this.rotation = rotation;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	set( center, halfSize, rotation ) {
 | |
| 
 | |
| 		this.center = center;
 | |
| 		this.halfSize = halfSize;
 | |
| 		this.rotation = rotation;
 | |
| 
 | |
| 		return this;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	copy( obb ) {
 | |
| 
 | |
| 		this.center.copy( obb.center );
 | |
| 		this.halfSize.copy( obb.halfSize );
 | |
| 		this.rotation.copy( obb.rotation );
 | |
| 
 | |
| 		return this;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	clone() {
 | |
| 
 | |
| 		return new this.constructor().copy( this );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	getSize( result ) {
 | |
| 
 | |
| 		return result.copy( this.halfSize ).multiplyScalar( 2 );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	* Reference: Closest Point on OBB to Point in Real-Time Collision Detection
 | |
| 	* by Christer Ericson (chapter 5.1.4)
 | |
| 	*/
 | |
| 	clampPoint( point, result ) {
 | |
| 
 | |
| 		const halfSize = this.halfSize;
 | |
| 
 | |
| 		v1.subVectors( point, this.center );
 | |
| 		this.rotation.extractBasis( xAxis, yAxis, zAxis );
 | |
| 
 | |
| 		// start at the center position of the OBB
 | |
| 
 | |
| 		result.copy( this.center );
 | |
| 
 | |
| 		// project the target onto the OBB axes and walk towards that point
 | |
| 
 | |
| 		const x = MathUtils.clamp( v1.dot( xAxis ), - halfSize.x, halfSize.x );
 | |
| 		result.add( xAxis.multiplyScalar( x ) );
 | |
| 
 | |
| 		const y = MathUtils.clamp( v1.dot( yAxis ), - halfSize.y, halfSize.y );
 | |
| 		result.add( yAxis.multiplyScalar( y ) );
 | |
| 
 | |
| 		const z = MathUtils.clamp( v1.dot( zAxis ), - halfSize.z, halfSize.z );
 | |
| 		result.add( zAxis.multiplyScalar( z ) );
 | |
| 
 | |
| 		return result;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	containsPoint( point ) {
 | |
| 
 | |
| 		v1.subVectors( point, this.center );
 | |
| 		this.rotation.extractBasis( xAxis, yAxis, zAxis );
 | |
| 
 | |
| 		// project v1 onto each axis and check if these points lie inside the OBB
 | |
| 
 | |
| 		return Math.abs( v1.dot( xAxis ) ) <= this.halfSize.x &&
 | |
| 				Math.abs( v1.dot( yAxis ) ) <= this.halfSize.y &&
 | |
| 				Math.abs( v1.dot( zAxis ) ) <= this.halfSize.z;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	intersectsBox3( box3 ) {
 | |
| 
 | |
| 		return this.intersectsOBB( obb.fromBox3( box3 ) );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	intersectsSphere( sphere ) {
 | |
| 
 | |
| 		// find the point on the OBB closest to the sphere center
 | |
| 
 | |
| 		this.clampPoint( sphere.center, closestPoint );
 | |
| 
 | |
| 		// if that point is inside the sphere, the OBB and sphere intersect
 | |
| 
 | |
| 		return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	* Reference: OBB-OBB Intersection in Real-Time Collision Detection
 | |
| 	* by Christer Ericson (chapter 4.4.1)
 | |
| 	*
 | |
| 	*/
 | |
| 	intersectsOBB( obb, epsilon = Number.EPSILON ) {
 | |
| 
 | |
| 		// prepare data structures (the code uses the same nomenclature like the reference)
 | |
| 
 | |
| 		a.c = this.center;
 | |
| 		a.e[ 0 ] = this.halfSize.x;
 | |
| 		a.e[ 1 ] = this.halfSize.y;
 | |
| 		a.e[ 2 ] = this.halfSize.z;
 | |
| 		this.rotation.extractBasis( a.u[ 0 ], a.u[ 1 ], a.u[ 2 ] );
 | |
| 
 | |
| 		b.c = obb.center;
 | |
| 		b.e[ 0 ] = obb.halfSize.x;
 | |
| 		b.e[ 1 ] = obb.halfSize.y;
 | |
| 		b.e[ 2 ] = obb.halfSize.z;
 | |
| 		obb.rotation.extractBasis( b.u[ 0 ], b.u[ 1 ], b.u[ 2 ] );
 | |
| 
 | |
| 		// compute rotation matrix expressing b in a's coordinate frame
 | |
| 
 | |
| 		for ( let i = 0; i < 3; i ++ ) {
 | |
| 
 | |
| 			for ( let j = 0; j < 3; j ++ ) {
 | |
| 
 | |
| 				R[ i ][ j ] = a.u[ i ].dot( b.u[ j ] );
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		// compute translation vector
 | |
| 
 | |
| 		v1.subVectors( b.c, a.c );
 | |
| 
 | |
| 		// bring translation into a's coordinate frame
 | |
| 
 | |
| 		t[ 0 ] = v1.dot( a.u[ 0 ] );
 | |
| 		t[ 1 ] = v1.dot( a.u[ 1 ] );
 | |
| 		t[ 2 ] = v1.dot( a.u[ 2 ] );
 | |
| 
 | |
| 		// compute common subexpressions. Add in an epsilon term to
 | |
| 		// counteract arithmetic errors when two edges are parallel and
 | |
| 		// their cross product is (near) null
 | |
| 
 | |
| 		for ( let i = 0; i < 3; i ++ ) {
 | |
| 
 | |
| 			for ( let j = 0; j < 3; j ++ ) {
 | |
| 
 | |
| 				AbsR[ i ][ j ] = Math.abs( R[ i ][ j ] ) + epsilon;
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		let ra, rb;
 | |
| 
 | |
| 		// test axes L = A0, L = A1, L = A2
 | |
| 
 | |
| 		for ( let i = 0; i < 3; i ++ ) {
 | |
| 
 | |
| 			ra = a.e[ i ];
 | |
| 			rb = b.e[ 0 ] * AbsR[ i ][ 0 ] + b.e[ 1 ] * AbsR[ i ][ 1 ] + b.e[ 2 ] * AbsR[ i ][ 2 ];
 | |
| 			if ( Math.abs( t[ i ] ) > ra + rb ) return false;
 | |
| 
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		// test axes L = B0, L = B1, L = B2
 | |
| 
 | |
| 		for ( let i = 0; i < 3; i ++ ) {
 | |
| 
 | |
| 			ra = a.e[ 0 ] * AbsR[ 0 ][ i ] + a.e[ 1 ] * AbsR[ 1 ][ i ] + a.e[ 2 ] * AbsR[ 2 ][ i ];
 | |
| 			rb = b.e[ i ];
 | |
| 			if ( Math.abs( t[ 0 ] * R[ 0 ][ i ] + t[ 1 ] * R[ 1 ][ i ] + t[ 2 ] * R[ 2 ][ i ] ) > ra + rb ) return false;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		// test axis L = A0 x B0
 | |
| 
 | |
| 		ra = a.e[ 1 ] * AbsR[ 2 ][ 0 ] + a.e[ 2 ] * AbsR[ 1 ][ 0 ];
 | |
| 		rb = b.e[ 1 ] * AbsR[ 0 ][ 2 ] + b.e[ 2 ] * AbsR[ 0 ][ 1 ];
 | |
| 		if ( Math.abs( t[ 2 ] * R[ 1 ][ 0 ] - t[ 1 ] * R[ 2 ][ 0 ] ) > ra + rb ) return false;
 | |
| 
 | |
| 		// test axis L = A0 x B1
 | |
| 
 | |
| 		ra = a.e[ 1 ] * AbsR[ 2 ][ 1 ] + a.e[ 2 ] * AbsR[ 1 ][ 1 ];
 | |
| 		rb = b.e[ 0 ] * AbsR[ 0 ][ 2 ] + b.e[ 2 ] * AbsR[ 0 ][ 0 ];
 | |
| 		if ( Math.abs( t[ 2 ] * R[ 1 ][ 1 ] - t[ 1 ] * R[ 2 ][ 1 ] ) > ra + rb ) return false;
 | |
| 
 | |
| 		// test axis L = A0 x B2
 | |
| 
 | |
| 		ra = a.e[ 1 ] * AbsR[ 2 ][ 2 ] + a.e[ 2 ] * AbsR[ 1 ][ 2 ];
 | |
| 		rb = b.e[ 0 ] * AbsR[ 0 ][ 1 ] + b.e[ 1 ] * AbsR[ 0 ][ 0 ];
 | |
| 		if ( Math.abs( t[ 2 ] * R[ 1 ][ 2 ] - t[ 1 ] * R[ 2 ][ 2 ] ) > ra + rb ) return false;
 | |
| 
 | |
| 		// test axis L = A1 x B0
 | |
| 
 | |
| 		ra = a.e[ 0 ] * AbsR[ 2 ][ 0 ] + a.e[ 2 ] * AbsR[ 0 ][ 0 ];
 | |
| 		rb = b.e[ 1 ] * AbsR[ 1 ][ 2 ] + b.e[ 2 ] * AbsR[ 1 ][ 1 ];
 | |
| 		if ( Math.abs( t[ 0 ] * R[ 2 ][ 0 ] - t[ 2 ] * R[ 0 ][ 0 ] ) > ra + rb ) return false;
 | |
| 
 | |
| 		// test axis L = A1 x B1
 | |
| 
 | |
| 		ra = a.e[ 0 ] * AbsR[ 2 ][ 1 ] + a.e[ 2 ] * AbsR[ 0 ][ 1 ];
 | |
| 		rb = b.e[ 0 ] * AbsR[ 1 ][ 2 ] + b.e[ 2 ] * AbsR[ 1 ][ 0 ];
 | |
| 		if ( Math.abs( t[ 0 ] * R[ 2 ][ 1 ] - t[ 2 ] * R[ 0 ][ 1 ] ) > ra + rb ) return false;
 | |
| 
 | |
| 		// test axis L = A1 x B2
 | |
| 
 | |
| 		ra = a.e[ 0 ] * AbsR[ 2 ][ 2 ] + a.e[ 2 ] * AbsR[ 0 ][ 2 ];
 | |
| 		rb = b.e[ 0 ] * AbsR[ 1 ][ 1 ] + b.e[ 1 ] * AbsR[ 1 ][ 0 ];
 | |
| 		if ( Math.abs( t[ 0 ] * R[ 2 ][ 2 ] - t[ 2 ] * R[ 0 ][ 2 ] ) > ra + rb ) return false;
 | |
| 
 | |
| 		// test axis L = A2 x B0
 | |
| 
 | |
| 		ra = a.e[ 0 ] * AbsR[ 1 ][ 0 ] + a.e[ 1 ] * AbsR[ 0 ][ 0 ];
 | |
| 		rb = b.e[ 1 ] * AbsR[ 2 ][ 2 ] + b.e[ 2 ] * AbsR[ 2 ][ 1 ];
 | |
| 		if ( Math.abs( t[ 1 ] * R[ 0 ][ 0 ] - t[ 0 ] * R[ 1 ][ 0 ] ) > ra + rb ) return false;
 | |
| 
 | |
| 		// test axis L = A2 x B1
 | |
| 
 | |
| 		ra = a.e[ 0 ] * AbsR[ 1 ][ 1 ] + a.e[ 1 ] * AbsR[ 0 ][ 1 ];
 | |
| 		rb = b.e[ 0 ] * AbsR[ 2 ][ 2 ] + b.e[ 2 ] * AbsR[ 2 ][ 0 ];
 | |
| 		if ( Math.abs( t[ 1 ] * R[ 0 ][ 1 ] - t[ 0 ] * R[ 1 ][ 1 ] ) > ra + rb ) return false;
 | |
| 
 | |
| 		// test axis L = A2 x B2
 | |
| 
 | |
| 		ra = a.e[ 0 ] * AbsR[ 1 ][ 2 ] + a.e[ 1 ] * AbsR[ 0 ][ 2 ];
 | |
| 		rb = b.e[ 0 ] * AbsR[ 2 ][ 1 ] + b.e[ 1 ] * AbsR[ 2 ][ 0 ];
 | |
| 		if ( Math.abs( t[ 1 ] * R[ 0 ][ 2 ] - t[ 0 ] * R[ 1 ][ 2 ] ) > ra + rb ) return false;
 | |
| 
 | |
| 		// since no separating axis is found, the OBBs must be intersecting
 | |
| 
 | |
| 		return true;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	* Reference: Testing Box Against Plane in Real-Time Collision Detection
 | |
| 	* by Christer Ericson (chapter 5.2.3)
 | |
| 	*/
 | |
| 	intersectsPlane( plane ) {
 | |
| 
 | |
| 		this.rotation.extractBasis( xAxis, yAxis, zAxis );
 | |
| 
 | |
| 		// compute the projection interval radius of this OBB onto L(t) = this->center + t * p.normal;
 | |
| 
 | |
| 		const r = this.halfSize.x * Math.abs( plane.normal.dot( xAxis ) ) +
 | |
| 				this.halfSize.y * Math.abs( plane.normal.dot( yAxis ) ) +
 | |
| 				this.halfSize.z * Math.abs( plane.normal.dot( zAxis ) );
 | |
| 
 | |
| 		// compute distance of the OBB's center from the plane
 | |
| 
 | |
| 		const d = plane.normal.dot( this.center ) - plane.constant;
 | |
| 
 | |
| 		// Intersection occurs when distance d falls within [-r,+r] interval
 | |
| 
 | |
| 		return Math.abs( d ) <= r;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	* Performs a ray/OBB intersection test and stores the intersection point
 | |
| 	* to the given 3D vector. If no intersection is detected, *null* is returned.
 | |
| 	*/
 | |
| 	intersectRay( ray, result ) {
 | |
| 
 | |
| 		// the idea is to perform the intersection test in the local space
 | |
| 		// of the OBB.
 | |
| 
 | |
| 		this.getSize( size );
 | |
| 		aabb.setFromCenterAndSize( v1.set( 0, 0, 0 ), size );
 | |
| 
 | |
| 		// create a 4x4 transformation matrix
 | |
| 
 | |
| 		matrix.setFromMatrix3( this.rotation );
 | |
| 		matrix.setPosition( this.center );
 | |
| 
 | |
| 		// transform ray to the local space of the OBB
 | |
| 
 | |
| 		inverse.copy( matrix ).invert();
 | |
| 		localRay.copy( ray ).applyMatrix4( inverse );
 | |
| 
 | |
| 		// perform ray <-> AABB intersection test
 | |
| 
 | |
| 		if ( localRay.intersectBox( aabb, result ) ) {
 | |
| 
 | |
| 			// transform the intersection point back to world space
 | |
| 
 | |
| 			return result.applyMatrix4( matrix );
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| 			return null;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	* Performs a ray/OBB intersection test. Returns either true or false if
 | |
| 	* there is a intersection or not.
 | |
| 	*/
 | |
| 	intersectsRay( ray ) {
 | |
| 
 | |
| 		return this.intersectRay( ray, v1 ) !== null;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	fromBox3( box3 ) {
 | |
| 
 | |
| 		box3.getCenter( this.center );
 | |
| 
 | |
| 		box3.getSize( this.halfSize ).multiplyScalar( 0.5 );
 | |
| 
 | |
| 		this.rotation.identity();
 | |
| 
 | |
| 		return this;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	equals( obb ) {
 | |
| 
 | |
| 		return obb.center.equals( this.center ) &&
 | |
| 			obb.halfSize.equals( this.halfSize ) &&
 | |
| 			obb.rotation.equals( this.rotation );
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	applyMatrix4( matrix ) {
 | |
| 
 | |
| 		const e = matrix.elements;
 | |
| 
 | |
| 		let sx = v1.set( e[ 0 ], e[ 1 ], e[ 2 ] ).length();
 | |
| 		const sy = v1.set( e[ 4 ], e[ 5 ], e[ 6 ] ).length();
 | |
| 		const sz = v1.set( e[ 8 ], e[ 9 ], e[ 10 ] ).length();
 | |
| 
 | |
| 		const det = matrix.determinant();
 | |
| 		if ( det < 0 ) sx = - sx;
 | |
| 
 | |
| 		rotationMatrix.setFromMatrix4( matrix );
 | |
| 
 | |
| 		const invSX = 1 / sx;
 | |
| 		const invSY = 1 / sy;
 | |
| 		const invSZ = 1 / sz;
 | |
| 
 | |
| 		rotationMatrix.elements[ 0 ] *= invSX;
 | |
| 		rotationMatrix.elements[ 1 ] *= invSX;
 | |
| 		rotationMatrix.elements[ 2 ] *= invSX;
 | |
| 
 | |
| 		rotationMatrix.elements[ 3 ] *= invSY;
 | |
| 		rotationMatrix.elements[ 4 ] *= invSY;
 | |
| 		rotationMatrix.elements[ 5 ] *= invSY;
 | |
| 
 | |
| 		rotationMatrix.elements[ 6 ] *= invSZ;
 | |
| 		rotationMatrix.elements[ 7 ] *= invSZ;
 | |
| 		rotationMatrix.elements[ 8 ] *= invSZ;
 | |
| 
 | |
| 		this.rotation.multiply( rotationMatrix );
 | |
| 
 | |
| 		this.halfSize.x *= sx;
 | |
| 		this.halfSize.y *= sy;
 | |
| 		this.halfSize.z *= sz;
 | |
| 
 | |
| 		v1.setFromMatrixPosition( matrix );
 | |
| 		this.center.add( v1 );
 | |
| 
 | |
| 		return this;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| const obb = new OBB();
 | |
| 
 | |
| export { OBB };
 |