代码迁移
This commit is contained in:
595
src/Draw/drawAssemble.js
Normal file
595
src/Draw/drawAssemble.js
Normal file
@ -0,0 +1,595 @@
|
||||
import MouseTip from '../MouseTip'
|
||||
import MouseEvent from '../Event'
|
||||
import Draw from './draw'
|
||||
|
||||
const transformCartesianToWGS84 = cartesian => {
|
||||
let ellipsoid = Cesium.Ellipsoid.WGS84
|
||||
let cartographic = ellipsoid.cartesianToCartographic(cartesian)
|
||||
const x = Cesium.Math.toDegrees(cartographic.longitude)
|
||||
const y = Cesium.Math.toDegrees(cartographic.latitude)
|
||||
const z = cartographic.height
|
||||
return { x, y, z }
|
||||
}
|
||||
|
||||
/**
|
||||
* @extends Draw*/
|
||||
class DrawAssemble extends Draw {
|
||||
/**
|
||||
* @constructor
|
||||
* @param sdk
|
||||
* @param [options] {object} 面属性
|
||||
* @param [options.color=rgba(185,14,14,0.58)] {object} 线属性
|
||||
|
||||
* */
|
||||
constructor(sdk, options = {}) {
|
||||
super(sdk, options)
|
||||
this.points = null
|
||||
this.polygonHasCreated = false
|
||||
}
|
||||
|
||||
static polygon(that, viewer = that.viewer) {
|
||||
let id = that.randomString()
|
||||
return viewer.entities.add(
|
||||
new Cesium.Entity({
|
||||
name: 'AssemblePolygon',
|
||||
id,
|
||||
polygon: {
|
||||
hierarchy: new Cesium.CallbackProperty(e => {
|
||||
let arr = that.computeAssemble(that.positions)
|
||||
for (let i = 0; i < arr.length; i++) {
|
||||
if (isNaN(arr[i].x)) {
|
||||
arr = []
|
||||
break
|
||||
}
|
||||
}
|
||||
return new Cesium.PolygonHierarchy(arr)
|
||||
}, false),
|
||||
material: Cesium.Color.fromCssColorString(that.color),
|
||||
outline: true,
|
||||
outlineColor: Cesium.Color.GREEN,
|
||||
zIndex: 99999999
|
||||
}
|
||||
})
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* @desc 开始动态绘制面
|
||||
* @method start
|
||||
* @param cb {function} 回调函数
|
||||
* @memberOf DrawPolygon
|
||||
* @example draw.start((err,positions)=>{
|
||||
*
|
||||
* })
|
||||
* */
|
||||
start(cb) {
|
||||
let that = this
|
||||
// eslint-disable-next-line no-undef
|
||||
if (YJ.Measure.GetMeasureStatus()) {
|
||||
cb('上一次测量未结束')
|
||||
} else {
|
||||
super.start()
|
||||
// eslint-disable-next-line no-undef
|
||||
YJ.Measure.SetMeasureStatus(true)
|
||||
let into
|
||||
this.tip = new MouseTip('左键确定,右键取消;', that.sdk)
|
||||
this.event = new MouseEvent(that.sdk)
|
||||
this.positions = []
|
||||
this.points_ids = [] //存放左键点击时临时添加的point的id
|
||||
let cache_positions = []
|
||||
let cache_84_position = []
|
||||
this.anchorpoints = []
|
||||
this.event.mouse_left((movement, cartesian) => {
|
||||
if (into === '2D') {
|
||||
return
|
||||
}
|
||||
into = '3D'
|
||||
if (!cartesian) return
|
||||
if (this.anchorpoints.length === 3) {
|
||||
this.anchorpoints[1] = cartesian;
|
||||
}
|
||||
else {
|
||||
this.anchorpoints.push(cartesian)
|
||||
}
|
||||
|
||||
cache_positions.push(this.cartesian3Towgs84(cartesian, this.viewer))
|
||||
// console.log(this.cartesian3Towgs84(cartesian))
|
||||
this.points_ids.push(this.create_point(cartesian))
|
||||
if (this.points_ids.length === 3) {
|
||||
let array = [cache_positions[0], cache_positions[2], cache_positions[1]]
|
||||
cb(null, array)
|
||||
this.end()
|
||||
}
|
||||
})
|
||||
this.event.mouse_move((movement, cartesian) => {
|
||||
if (into === '2D') {
|
||||
return
|
||||
}
|
||||
this.tip.setPosition(
|
||||
cartesian,
|
||||
movement.endPosition.x,
|
||||
movement.endPosition.y
|
||||
)
|
||||
if (!cartesian || this.points_ids.length === 0) return
|
||||
if (cache_positions.length > 1) {
|
||||
this.positions = [cache_positions[0], this.cartesian3Towgs84(cartesian, this.viewer), cache_positions[1]]
|
||||
}
|
||||
else {
|
||||
this.positions = [cache_positions[0], this.cartesian3Towgs84(cartesian, this.viewer)]
|
||||
}
|
||||
if (this.points_ids.length === 1 && !Cesium.defined(this.assemblePolygon)) {
|
||||
this.assemblePolygon = DrawAssemble.polygon(this)
|
||||
}
|
||||
if (this.anchorpoints.length >= 2) {
|
||||
if (this.points_ids.length === 1) {
|
||||
let pnts = new Array();
|
||||
this.positions.forEach((item) => {
|
||||
pnts.push([item.lng, item.lat]);
|
||||
});
|
||||
|
||||
let mid = P.PlotUtils.mid(pnts[0], pnts[1])
|
||||
let d = P.PlotUtils.distance(pnts[0], mid) / 0.9
|
||||
let pnt = P.PlotUtils.getThirdPoint(pnts[0], mid, P.Constants.HALF_PI, d, true)
|
||||
this.positions = [this.positions[0], { lng: pnt[0], lat: pnt[1] }, this.positions[1]];
|
||||
}
|
||||
//替换中间点
|
||||
this.anchorpoints[1] = cartesian;
|
||||
}
|
||||
else {
|
||||
this.anchorpoints.push(cartesian)
|
||||
}
|
||||
})
|
||||
this.event.mouse_right((movement, cartesian) => {
|
||||
if (into === '2D') {
|
||||
return
|
||||
}
|
||||
cb(null)
|
||||
this.end()
|
||||
})
|
||||
|
||||
this.event.gesture_pinck_start((movement, cartesian) => {
|
||||
if (into === '2D') {
|
||||
return
|
||||
}
|
||||
let startTime = new Date()
|
||||
this.event.gesture_pinck_end(() => {
|
||||
let endTime = new Date()
|
||||
if (endTime - startTime >= 500) {
|
||||
this.end()
|
||||
cb(false)
|
||||
}
|
||||
else {
|
||||
if (this.anchorpoints.length === 2) {
|
||||
this.anchorpoints.push(cartesian)
|
||||
cb(null, this.positions)
|
||||
this.end()
|
||||
}
|
||||
else {
|
||||
if (!cartesian || Cesium.defined(this.assemblePolygon)) return
|
||||
this.tip.setPosition(
|
||||
cartesian,
|
||||
(movement.position1.x + movement.position2.x) / 2,
|
||||
(movement.position1.y + movement.position2.y) / 2
|
||||
)
|
||||
this.anchorpoints.push(cartesian)
|
||||
this.assemblePolygon = DrawAssemble.polygon(this)
|
||||
cache_positions.push(this.cartesian3Towgs84(cartesian))
|
||||
// console.log(this.cartesian3Towgs84(cartesian))
|
||||
this.points_ids.push(this.create_point(cartesian))
|
||||
}
|
||||
}
|
||||
})
|
||||
})
|
||||
|
||||
if (!this._is2D && this._sdk2D) {
|
||||
this.event2D = new MouseEvent(this._sdk2D)
|
||||
this.event2D.mouse_left((movement, cartesian) => {
|
||||
if (into === '3D') {
|
||||
return
|
||||
}
|
||||
into = '2D'
|
||||
if (!cartesian) return
|
||||
if (this.anchorpoints.length === 3) {
|
||||
this.anchorpoints[1] = cartesian;
|
||||
}
|
||||
else {
|
||||
this.anchorpoints.push(cartesian)
|
||||
}
|
||||
|
||||
cache_positions.push(this.cartesian3Towgs84(cartesian, this.viewer))
|
||||
// console.log(this.cartesian3Towgs84(cartesian))
|
||||
this.points_ids.push(this.create_point(cartesian, this._sdk2D.viewer))
|
||||
if (this.points_ids.length === 3) {
|
||||
let array = [cache_positions[0], cache_positions[2], cache_positions[1]]
|
||||
cb(null, array)
|
||||
this.end()
|
||||
}
|
||||
})
|
||||
this.event2D.mouse_move((movement, cartesian) => {
|
||||
if (into === '3D') {
|
||||
return
|
||||
}
|
||||
this.tip.setPosition(
|
||||
cartesian,
|
||||
movement.endPosition.x + this.viewer.canvas.width,
|
||||
movement.endPosition.y
|
||||
)
|
||||
if (!cartesian || this.points_ids.length === 0) return
|
||||
if (cache_positions.length > 1) {
|
||||
this.positions = [cache_positions[0], this.cartesian3Towgs84(cartesian, this.viewer), cache_positions[1]]
|
||||
}
|
||||
else {
|
||||
this.positions = [cache_positions[0], this.cartesian3Towgs84(cartesian, this.viewer)]
|
||||
}
|
||||
if (this.points_ids.length === 1 && !Cesium.defined(this.assemblePolygon)) {
|
||||
this.assemblePolygon = DrawAssemble.polygon(this, this._sdk2D.viewer)
|
||||
}
|
||||
if (this.anchorpoints.length >= 2) {
|
||||
if (this.points_ids.length === 1) {
|
||||
let pnts = new Array();
|
||||
this.positions.forEach((item) => {
|
||||
pnts.push([item.lng, item.lat]);
|
||||
});
|
||||
|
||||
let mid = P.PlotUtils.mid(pnts[0], pnts[1])
|
||||
let d = P.PlotUtils.distance(pnts[0], mid) / 0.9
|
||||
let pnt = P.PlotUtils.getThirdPoint(pnts[0], mid, P.Constants.HALF_PI, d, true)
|
||||
this.positions = [this.positions[0], { lng: pnt[0], lat: pnt[1] }, this.positions[1]];
|
||||
}
|
||||
//替换中间点
|
||||
this.anchorpoints[1] = cartesian;
|
||||
}
|
||||
else {
|
||||
this.anchorpoints.push(cartesian)
|
||||
}
|
||||
})
|
||||
this.event2D.mouse_right((movement, cartesian) => {
|
||||
if (into === '3D') {
|
||||
return
|
||||
}
|
||||
cb(null)
|
||||
this.end()
|
||||
})
|
||||
|
||||
this.event2D.gesture_pinck_start((movement, cartesian) => {
|
||||
if (into === '3D') {
|
||||
return
|
||||
}
|
||||
let startTime = new Date()
|
||||
this.event2D.gesture_pinck_end(() => {
|
||||
let endTime = new Date()
|
||||
if (endTime - startTime >= 500) {
|
||||
this.end()
|
||||
cb(false)
|
||||
}
|
||||
else {
|
||||
if (this.anchorpoints.length === 2) {
|
||||
this.anchorpoints.push(cartesian)
|
||||
cb(null, this.positions)
|
||||
this.end()
|
||||
}
|
||||
else {
|
||||
if (!cartesian || Cesium.defined(this.assemblePolygon)) return
|
||||
this.tip.setPosition(
|
||||
cartesian,
|
||||
((movement.position1.x + movement.position2.x) / 2) + this.viewer.canvas.width,
|
||||
(movement.position1.y + movement.position2.y) / 2
|
||||
)
|
||||
this.anchorpoints.push(cartesian)
|
||||
this.assemblePolygon = DrawAssemble.polygon(this, this._sdk2D.viewer)
|
||||
cache_positions.push(this.cartesian3Towgs84(cartesian))
|
||||
// console.log(this.cartesian3Towgs84(cartesian))
|
||||
this.points_ids.push(this.create_point(cartesian, this._sdk2D.viewer))
|
||||
}
|
||||
}
|
||||
})
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
end() {
|
||||
super.end();
|
||||
this.viewer.entities.remove(this.assemblePolygon)
|
||||
if (!this._is2D && this._sdk2D) {
|
||||
this._sdk2D.viewer.entities.remove(this.assemblePolygon)
|
||||
}
|
||||
}
|
||||
|
||||
// computeAssemblePoints(anchorpoints) {
|
||||
// let points = []
|
||||
|
||||
// let originP = transformCartesianToWGS84(anchorpoints[0])
|
||||
// let lastP = anchorpoints[1]
|
||||
// ? transformCartesianToWGS84(anchorpoints[1])
|
||||
// : { x: originP.x + 0.00001, y: originP.y + 0.00001, z: originP.z }
|
||||
// let vectorOL = { x: lastP.x - originP.x, y: lastP.y - originP.y }
|
||||
// let dOL = Math.sqrt(vectorOL.x * vectorOL.x + vectorOL.y * vectorOL.y)
|
||||
// let v_O_P1_lr = this.calculateVector(
|
||||
// vectorOL,
|
||||
// Math.PI / 3,
|
||||
// (Math.sqrt(3) / 12) * dOL
|
||||
// )
|
||||
// let originP_P1 = v_O_P1_lr[1]
|
||||
// let p1 = { x: originP.x + originP_P1.x, y: originP.y + originP_P1.y }
|
||||
// let p2 = { x: (originP.x + lastP.x) / 2, y: (originP.y + lastP.y) / 2 }
|
||||
// let v_L_P3_lr = this.calculateVector(
|
||||
// vectorOL,
|
||||
// (Math.PI * 2) / 3,
|
||||
// (Math.sqrt(3) / 12) * dOL
|
||||
// )
|
||||
// let lastP_P3 = v_L_P3_lr[1]
|
||||
// let p3 = { x: lastP.x + lastP_P3.x, y: lastP.y + lastP_P3.y }
|
||||
// let v_O_P5_lr = this.calculateVector(vectorOL, Math.PI / 2, (1 / 2) * dOL)
|
||||
// let v_O_P5 = v_O_P5_lr[0]
|
||||
// let p5 = { x: v_O_P5.x + p2.x, y: v_O_P5.y + p2.y }
|
||||
// let p0 = originP
|
||||
// let p4 = lastP
|
||||
// points.push(p0, p1, p2, p3, p4, p5)
|
||||
// const closeCardinal = this.createCloseCardinal(points)
|
||||
// const fb_points = this.calculatePointsFBZ3(closeCardinal, 100)
|
||||
// let result = []
|
||||
// let result2 = []
|
||||
// for (let index = 0; index < fb_points.length; index++) {
|
||||
// const ele = fb_points[index]
|
||||
// let obj = {
|
||||
// lng: ele.x,
|
||||
// lat: ele.y,
|
||||
// alt: 0
|
||||
// }
|
||||
// result.push(ele.x, ele.y, 0)
|
||||
// result2.push(obj)
|
||||
// }
|
||||
// this.position = result2
|
||||
// this.points = result
|
||||
// }
|
||||
|
||||
// computeAssemblePoints2(anchorpoints) {
|
||||
// let points = anchorpoints.length;
|
||||
// if (points < 2) {
|
||||
// return false
|
||||
// } else {
|
||||
// let pnts = new Array();
|
||||
// anchorpoints.forEach((item) => {
|
||||
// let posLonLat = this.cartesian3Towgs84(item, this.viewer);;
|
||||
// pnts.push([posLonLat.lng, posLonLat.lat]);
|
||||
// });
|
||||
// //console.log("pnts6666",pnts);
|
||||
// // pnts.push(tailPoint);
|
||||
// // pnts.push(headerPoint);
|
||||
|
||||
// if (pnts.length === 2) {
|
||||
// let mid = P.PlotUtils.mid(pnts[0], pnts[1])
|
||||
// //let d = utils.MathDistance(pnts[0], mid) / 0.9
|
||||
// let d = P.PlotUtils.distance(pnts[0], mid) / 0.9
|
||||
// //console.log("d",d);
|
||||
// let pnt = P.PlotUtils.getThirdPoint(pnts[0], mid, P.Constants.HALF_PI, d, true)
|
||||
// pnts = [pnts[0], pnt, pnts[1]];
|
||||
// //console.log("pnt",pnt);
|
||||
// //createPoint(Cesium.Cartesian3.fromDegrees(pnt[0], pnt[1]));
|
||||
// }
|
||||
// let mid = P.PlotUtils.mid(pnts[0], pnts[2])
|
||||
// pnts.push(mid, pnts[0], pnts[1])
|
||||
|
||||
// let [normals, pnt1, pnt2, pnt3, result, result2] = [[], undefined, undefined, undefined, [], []]
|
||||
// for (let i = 0; i < pnts.length - 2; i++) {
|
||||
// pnt1 = pnts[i]
|
||||
// pnt2 = pnts[i + 1]
|
||||
// pnt3 = pnts[i + 2]
|
||||
// let normalPoints = P.PlotUtils.getBisectorNormals(0.4, pnt1, pnt2, pnt3)
|
||||
// normals = normals.concat(normalPoints)
|
||||
// }
|
||||
// let count = normals.length
|
||||
// normals = [normals[count - 1]].concat(normals.slice(0, count - 1))
|
||||
// for (let i = 0; i < pnts.length - 2; i++) {
|
||||
// pnt1 = pnts[i]
|
||||
// pnt2 = pnts[i + 1]
|
||||
// result = result.concat([...pnt1, 0])
|
||||
// result2.push(
|
||||
// {
|
||||
// lng: pnt1[0],
|
||||
// lat: pnt1[1],
|
||||
// alt: 0
|
||||
// }
|
||||
// )
|
||||
// for (let t = 0; t <= P.Constants.FITTING_COUNT; t++) {
|
||||
// let pnt = P.PlotUtils.getCubicValue(t / P.Constants.FITTING_COUNT, pnt1, normals[i * 2], normals[i * 2 + 1], pnt2)
|
||||
// result = result.concat([...pnt, 0])
|
||||
// result2.push(
|
||||
// {
|
||||
// lng: pnt[0],
|
||||
// lat: pnt[1],
|
||||
// alt: 0
|
||||
// }
|
||||
// )
|
||||
// }
|
||||
// result = result.concat([...pnt2, 0])
|
||||
// result2.push(
|
||||
// {
|
||||
// lng: pnt2[0],
|
||||
// lat: pnt2[1],
|
||||
// alt: 0
|
||||
// }
|
||||
// )
|
||||
// }
|
||||
// this.position = result2
|
||||
// this.points = result
|
||||
// }
|
||||
// }
|
||||
|
||||
calculateVector(v, theta, d) {
|
||||
if (!theta) theta = Math.PI / 2
|
||||
if (!d) d = 1
|
||||
let x_1
|
||||
let x_2
|
||||
let y_1
|
||||
let y_2
|
||||
let v_l
|
||||
let v_r
|
||||
let d_v = Math.sqrt(v.x * v.x + v.y * v.y)
|
||||
if (v.y == 0) {
|
||||
x_1 = x_2 = (d_v * d * Math.cos(theta)) / v.x
|
||||
if (v.x > 0) {
|
||||
y_1 = Math.sqrt(d * d - x_1 * x_1)
|
||||
y_2 = -y_1
|
||||
} else if (v.x < 0) {
|
||||
y_2 = Math.sqrt(d * d - x_1 * x_1)
|
||||
y_1 = -y_2
|
||||
}
|
||||
v_l = { x: x_1, y: y_1 }
|
||||
v_r = { x: x_2, y: y_2 }
|
||||
} else {
|
||||
let n = -v.x / v.y
|
||||
let m = (d * d_v * Math.cos(theta)) / v.y
|
||||
let a = 1 + n * n
|
||||
let b = 2 * n * m
|
||||
let c = m * m - d * d
|
||||
x_1 = (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a)
|
||||
x_2 = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a)
|
||||
y_1 = n * x_1 + m
|
||||
y_2 = n * x_2 + m
|
||||
if (v.y >= 0) {
|
||||
v_l = { x: x_1, y: y_1 }
|
||||
v_r = { x: x_2, y: y_2 }
|
||||
} else if (v.y < 0) {
|
||||
v_l = { x: x_2, y: y_2 }
|
||||
v_r = { x: x_1, y: y_1 }
|
||||
}
|
||||
}
|
||||
return [v_l, v_r]
|
||||
}
|
||||
|
||||
createCloseCardinal(points) {
|
||||
if (points == null || points.length < 3) {
|
||||
return points
|
||||
}
|
||||
//获取起点,作为终点,以闭合曲线。
|
||||
let lastP = points[0]
|
||||
points.push(lastP)
|
||||
//定义传入的点数组,将在点数组中央(每两个点)插入两个控制点
|
||||
let cPoints = points
|
||||
//包含输入点和控制点的数组
|
||||
let cardinalPoints = []
|
||||
//至少三个点以上
|
||||
//这些都是相关资料测出的经验数值
|
||||
//定义张力系数,取值在0<t<0.5
|
||||
let t = 0.4
|
||||
//为端点张力系数因子,取值在0<b<1
|
||||
// let b = 0.5;
|
||||
//误差控制,是一个大于等于0的数,用于三点非常趋近与一条直线时,减少计算量
|
||||
let e = 0.005
|
||||
//传入的点数量,至少有三个,n至少为2
|
||||
let n = cPoints.length - 1
|
||||
//从开始遍历到倒数第二个,其中倒数第二个用于计算起点(终点)的插值控制点
|
||||
for (let k = 0; k <= n - 1; k++) {
|
||||
let p0, p1, p2
|
||||
//计算起点(终点)的左右控制点
|
||||
if (k == n - 1) {
|
||||
//三个基础输入点
|
||||
p0 = cPoints[n - 1]
|
||||
p1 = cPoints[0]
|
||||
p2 = cPoints[1]
|
||||
} else {
|
||||
p0 = cPoints[k]
|
||||
p1 = cPoints[k + 1]
|
||||
p2 = cPoints[k + 2]
|
||||
}
|
||||
//定义p1的左控制点和右控制点
|
||||
let p1l = { x: undefined, y: undefined }
|
||||
let p1r = { x: undefined, y: undefined }
|
||||
//通过p0、p1、p2计算p1点的做控制点p1l和又控制点p1r
|
||||
//计算向量p0_p1和p1_p2
|
||||
let p0_p1 = { x: p1.x - p0.x, y: p1.y - p0.y }
|
||||
let p1_p2 = { x: p2.x - p1.x, y: p2.y - p1.y }
|
||||
//并计算模
|
||||
let d01 = Math.sqrt(p0_p1.x * p0_p1.x + p0_p1.y * p0_p1.y)
|
||||
let d12 = Math.sqrt(p1_p2.x * p1_p2.x + p1_p2.y * p1_p2.y)
|
||||
//向量单位化
|
||||
let p0_p1_1 = { x: p0_p1.x / d01, y: p0_p1.y / d01 }
|
||||
let p1_p2_1 = { x: p1_p2.x / d12, y: p1_p2.y / d12 }
|
||||
//计算向量p0_p1和p1_p2的夹角平分线向量
|
||||
let p0_p1_p2 = { x: p0_p1_1.x + p1_p2_1.x, y: p0_p1_1.y + p1_p2_1.y }
|
||||
//计算向量 p0_p1_p2 的模
|
||||
let d012 = Math.sqrt(p0_p1_p2.x * p0_p1_p2.x + p0_p1_p2.y * p0_p1_p2.y)
|
||||
//单位化向量p0_p1_p2
|
||||
let p0_p1_p2_1 = { x: p0_p1_p2.x / d012, y: p0_p1_p2.y / d012 }
|
||||
//判断p0、p1、p2是否共线,这里判定向量p0_p1和p1_p2的夹角的余弦和1的差值小于e就认为三点共线
|
||||
let cosE_p0p1p2 = (p0_p1_1.x * p1_p2_1.x + p0_p1_1.y * p1_p2_1.y) / 1
|
||||
//共线
|
||||
if (Math.abs(1 - cosE_p0p1p2) < e) {
|
||||
//计算p1l的坐标
|
||||
p1l.x = p1.x - p1_p2_1.x * d01 * t
|
||||
p1l.y = p1.y - p1_p2_1.y * d01 * t
|
||||
//计算p1r的坐标
|
||||
p1r.x = p1.x + p0_p1_1.x * d12 * t
|
||||
p1r.y = p1.y + p0_p1_1.y * d12 * t
|
||||
}
|
||||
//非共线
|
||||
else {
|
||||
//计算p1l的坐标
|
||||
p1l.x = p1.x - p0_p1_p2_1.x * d01 * t
|
||||
p1l.y = p1.y - p0_p1_p2_1.y * d01 * t
|
||||
//计算p1r的坐标
|
||||
p1r.x = p1.x + p0_p1_p2_1.x * d12 * t
|
||||
p1r.y = p1.y + p0_p1_p2_1.y * d12 * t
|
||||
}
|
||||
//记录起点(终点)的左右插值控制点及倒数第二个控制点
|
||||
if (k == n - 1) {
|
||||
cardinalPoints[0] = p1
|
||||
cardinalPoints[1] = p1r
|
||||
cardinalPoints[(n - 2) * 3 + 2 + 3] = p1l
|
||||
cardinalPoints[(n - 2) * 3 + 2 + 4] = cPoints[n]
|
||||
} else {
|
||||
//记录下这三个控制点
|
||||
cardinalPoints[k * 3 + 2 + 0] = p1l
|
||||
cardinalPoints[k * 3 + 2 + 1] = p1
|
||||
cardinalPoints[k * 3 + 2 + 2] = p1r
|
||||
}
|
||||
}
|
||||
return cardinalPoints
|
||||
}
|
||||
|
||||
calculatePointsFBZ3(points, part) {
|
||||
if (!part) part = 20
|
||||
//获取待拆分的点
|
||||
let bezierPts = []
|
||||
let scale = 0.05
|
||||
if (part > 0) {
|
||||
scale = 1 / part
|
||||
}
|
||||
for (let i = 0; i < points.length - 3;) {
|
||||
//起始点
|
||||
let pointS = points[i]
|
||||
//第一个控制点
|
||||
let pointC1 = points[i + 1]
|
||||
//第二个控制点
|
||||
let pointC2 = points[i + 2]
|
||||
//结束点
|
||||
let pointE = points[i + 3]
|
||||
bezierPts.push(pointS)
|
||||
for (let t = 0; t < 1;) {
|
||||
//三次贝塞尔曲线公式
|
||||
let x =
|
||||
(1 - t) * (1 - t) * (1 - t) * pointS.x +
|
||||
3 * t * (1 - t) * (1 - t) * pointC1.x +
|
||||
3 * t * t * (1 - t) * pointC2.x +
|
||||
t * t * t * pointE.x
|
||||
let y =
|
||||
(1 - t) * (1 - t) * (1 - t) * pointS.y +
|
||||
3 * t * (1 - t) * (1 - t) * pointC1.y +
|
||||
3 * t * t * (1 - t) * pointC2.y +
|
||||
t * t * t * pointE.y
|
||||
let point = { x: x, y: y }
|
||||
bezierPts.push(point)
|
||||
t += scale
|
||||
}
|
||||
i += 3
|
||||
if (i >= points.length) {
|
||||
bezierPts.push(pointS)
|
||||
}
|
||||
}
|
||||
return bezierPts
|
||||
}
|
||||
}
|
||||
|
||||
export default DrawAssemble
|
Reference in New Issue
Block a user