Files
video/rtc/rtc.py

168 lines
6.0 KiB
Python
Raw Normal View History

2025-09-02 19:46:34 +08:00
import asyncio
2025-09-02 23:06:36 +08:00
from datetime import datetime
2025-09-02 19:46:34 +08:00
import aiohttp
2025-09-02 21:42:09 +08:00
import cv2
2025-09-02 20:14:40 +08:00
import numpy as np
2025-09-02 19:46:34 +08:00
from aiortc import RTCPeerConnection, RTCSessionDescription, RTCConfiguration
from aiortc.mediastreams import MediaStreamTrack
2025-09-02 21:30:28 +08:00
from ocr.ocr_violation_detector import OCRViolationDetector
2025-09-02 23:06:36 +08:00
from ws.ws import send_message_to_client
2025-09-02 19:46:34 +08:00
class VideoTrack(MediaStreamTrack):
kind = "video"
def __init__(self, max_frames=1):
super().__init__()
self.frames = asyncio.Queue(maxsize=max_frames)
async def recv(self):
return await super().recv()
2025-09-02 23:06:36 +08:00
async def rtc_frame_receiver(url, frame_queue, stop_event):
2025-09-02 19:46:34 +08:00
"""
2025-09-02 20:14:40 +08:00
对每帧进行检查只要接收到 RTC 帧且队列为空就往队列放入cv2格式的帧数据
2025-09-02 23:06:36 +08:00
当stop_event被设置时停止接收
2025-09-02 19:46:34 +08:00
"""
pc = RTCPeerConnection(RTCConfiguration(iceServers=[]))
video_track = VideoTrack()
pc.addTrack(video_track)
# 累计帧计数器
total_frames = 0
@pc.on("track")
async def on_track(track):
nonlocal total_frames
if track.kind == "video":
print("接收到视频轨道、开始接收视频帧")
2025-09-02 23:06:36 +08:00
while not stop_event.is_set(): # 检查是否需要停止
2025-09-02 19:46:34 +08:00
# 接收当前帧并累计计数
frame = await track.recv()
2025-09-02 20:14:40 +08:00
# 转换为cv2兼容的BGR格式numpy数组
frame_cv2 = frame.to_ndarray(format='bgr24')
# 验证是否为cv2兼容格式
if isinstance(frame_cv2, np.ndarray) and frame_cv2.ndim == 3 and frame_cv2.shape[2] == 3:
total_frames += 1
# 对每帧都检查队列状态、队列为空则放入
2025-09-02 23:06:36 +08:00
if frame_queue.empty() and not stop_event.is_set(): # 确保还未收到停止信号
2025-09-02 20:14:40 +08:00
# 队列为空、放入当前cv2帧
await frame_queue.put(frame_cv2)
else:
2025-09-02 23:06:36 +08:00
# 队列非空或已收到停止信号、跳过当前帧
if not stop_event.is_set():
print(f"{total_frames}帧:队列非空、跳过该帧")
2025-09-02 19:46:34 +08:00
else:
2025-09-02 20:14:40 +08:00
print("帧格式转换失败不是有效的cv2格式")
2025-09-02 19:46:34 +08:00
# 创建并设置本地offer
offer = await pc.createOffer()
print("已创建本地 SDP Offer")
await pc.setLocalDescription(offer)
# 发送offer到服务器
async with aiohttp.ClientSession() as session:
print("开始向服务器发送 SDP Offer")
async with session.post(
url,
data=offer.sdp.encode(),
headers={
"Content-Type": "application/sdp",
"Content-Length": str(len(offer.sdp))
},
ssl=False
) as response:
print("已接收到服务器的响应、开始处理 SDP Answer")
answer_sdp = await response.text()
await pc.setRemoteDescription(RTCSessionDescription(sdp=answer_sdp, type='answer'))
try:
2025-09-02 23:06:36 +08:00
# 保持连接,直到收到停止信号
while not stop_event.is_set():
2025-09-02 19:46:34 +08:00
await asyncio.sleep(1)
except KeyboardInterrupt:
print("用户中断")
finally:
print("开始关闭 RTCPeerConnection")
await pc.close()
print("已关闭 RTCPeerConnection")
2025-09-02 23:06:36 +08:00
async def frame_consumer(ip, frame_queue, stop_event):
2025-09-02 19:46:34 +08:00
"""
2025-09-02 20:14:40 +08:00
从队列中读取cv2帧并处理队列空时会阻塞等待
2025-09-02 23:06:36 +08:00
检测到违规内容后设置stop_event以终止所有任务
2025-09-02 19:46:34 +08:00
2025-09-02 23:06:36 +08:00
Args:
ip: IP地址
frame_queue: 帧队列
stop_event: 用于控制任务停止的事件
2025-09-02 19:46:34 +08:00
"""
2025-09-02 23:06:36 +08:00
# 创建OCR检测器实例
2025-09-02 21:30:28 +08:00
ocr_detector = OCRViolationDetector(
forbidden_words_path=r"D:\Git\bin\video\ocr\forbidden_words.txt", # 替换为实际路径
2025-09-02 21:42:09 +08:00
ocr_confidence_threshold=0.5, )
2025-09-02 21:30:28 +08:00
2025-09-02 23:06:36 +08:00
while not stop_event.is_set(): # 检查是否需要停止
2025-09-02 20:14:40 +08:00
# 从队列中获取cv2帧队列为空时会阻塞等待新帧
2025-09-02 19:46:34 +08:00
current_frame = await frame_queue.get()
2025-09-02 21:35:24 +08:00
has_violation, words, confidences = ocr_detector.detect(current_frame)
2025-09-02 23:06:36 +08:00
print(has_violation)
print( words)
print( confidences)
2025-09-02 21:35:24 +08:00
# 输出所有检测到的违禁词
if has_violation:
print(f"测试结果:图片中共检测到 {len(words)} 个违禁词:")
2025-09-02 23:06:36 +08:00
response_data = {
"status": "stop",
"timestamp": datetime.now().isoformat(),
}
await send_message_to_client(ip,response_data )
2025-09-02 21:35:24 +08:00
for word, conf in zip(words, confidences):
print(f"- {word}(置信度:{conf:.4f}")
2025-09-02 23:06:36 +08:00
# 检测到违规,设置停止事件
print("检测到违规内容准备关闭AI检测")
stop_event.set()
2025-09-02 21:35:24 +08:00
else:
print("测试结果:图片中未检测到违禁词")
2025-09-02 19:46:34 +08:00
# 标记任务完成
frame_queue.task_done()
2025-09-02 21:42:09 +08:00
def process_webrtc_stream(ip, webrtc_url):
"""
2025-09-02 23:06:36 +08:00
处理WEBRTC流并持续打印OCR检测结果检测到违规后关闭
2025-09-02 19:46:34 +08:00
2025-09-02 21:42:09 +08:00
Args:
2025-09-02 23:06:36 +08:00
ip: IP地址
2025-09-02 21:42:09 +08:00
webrtc_url: WEBRTC服务器地址
"""
2025-09-02 23:06:36 +08:00
# 创建队列和停止事件
2025-09-02 19:46:34 +08:00
frame_queue = asyncio.Queue(maxsize=1)
2025-09-02 23:06:36 +08:00
stop_event = asyncio.Event() # 用于控制任务停止的事件
2025-09-02 19:46:34 +08:00
2025-09-02 21:42:09 +08:00
# 定义事件循环中的主任务
async def main_task():
# 创建任务
2025-09-02 23:06:36 +08:00
receiver_task = asyncio.create_task(rtc_frame_receiver(webrtc_url, frame_queue, stop_event))
consumer_task = asyncio.create_task(frame_consumer(ip, frame_queue, stop_event))
2025-09-02 19:46:34 +08:00
2025-09-02 23:06:36 +08:00
# 等待任一任务完成当stop_event被设置时两个任务都会退出
2025-09-02 21:42:09 +08:00
await asyncio.gather(receiver_task, consumer_task)
2025-09-02 19:46:34 +08:00
2025-09-02 20:14:40 +08:00
try:
2025-09-02 21:42:09 +08:00
# 运行事件循环
asyncio.run(main_task())
except KeyboardInterrupt:
print("用户中断处理流程")
2025-09-02 20:14:40 +08:00
finally:
# 确保关闭所有cv2窗口
cv2.destroyAllWindows()
2025-09-02 23:06:36 +08:00
print("AI检测已关闭")