Files
video/ws/ws.py

387 lines
16 KiB
Python
Raw Normal View History

2025-09-02 18:51:50 +08:00
import asyncio
2025-09-03 16:27:53 +08:00
import datetime
2025-09-02 18:51:50 +08:00
import json
2025-09-03 17:02:22 +08:00
import os
2025-09-02 18:51:50 +08:00
from contextlib import asynccontextmanager
2025-09-03 17:08:28 +08:00
from typing import Dict, Optional, AsyncGenerator
2025-09-04 12:29:27 +08:00
from service.device_service import update_online_status_by_ip, increment_alarm_count_by_ip
from service.device_action_service import add_device_action
from schema.device_action_schema import DeviceActionCreate
2025-09-02 18:51:50 +08:00
2025-09-03 17:02:22 +08:00
import cv2
2025-09-03 16:27:53 +08:00
import numpy as np
from fastapi import WebSocket, APIRouter, WebSocketDisconnect, FastAPI
2025-09-04 17:08:25 +08:00
from queue import Queue
from threading import Lock
2025-09-03 16:27:53 +08:00
2025-09-03 17:02:22 +08:00
from ocr.model_violation_detector import MultiModelViolationDetector
2025-09-03 17:08:28 +08:00
2025-09-04 12:29:27 +08:00
# 配置文件路径(建议实际部署时改为相对路径或环境变量)
2025-09-03 17:08:28 +08:00
YOLO_MODEL_PATH = r"D:\Git\bin\video\ocr\models\best.pt"
2025-09-03 17:02:22 +08:00
FORBIDDEN_WORDS_PATH = r"D:\Git\bin\video\ocr\forbidden_words.txt"
OCR_CONFIG_PATH = r"D:\Git\bin\video\ocr\config\1.yaml"
KNOWN_FACES_DIR = r"D:\Git\bin\video\ocr\known_faces"
2025-09-04 17:08:25 +08:00
# 模型池配置根据GPU显存调整每个模型约占1G显存
MODEL_POOL_SIZE = 3 # 最大并发客户端数
2025-09-03 17:02:22 +08:00
2025-09-04 12:29:27 +08:00
# 配置常量
2025-09-03 16:27:53 +08:00
HEARTBEAT_INTERVAL = 30 # 心跳检查间隔(秒)
2025-09-03 17:02:22 +08:00
HEARTBEAT_TIMEOUT = 600 # 客户端超时阈值(秒)
2025-09-03 16:27:53 +08:00
WS_ENDPOINT = "/ws" # WebSocket端点路径
2025-09-04 12:29:27 +08:00
FRAME_QUEUE_SIZE = 1 # 帧队列大小限制
2025-09-03 16:27:53 +08:00
2025-09-04 12:29:27 +08:00
2025-09-04 17:08:25 +08:00
# 模型池实现 - 提前初始化固定数量的模型实例
class ModelPool:
def __init__(self, pool_size: int = MODEL_POOL_SIZE):
self.pool = Queue(maxsize=pool_size)
self.lock = Lock()
# 提前初始化模型实例(显存会在此阶段预分配)
for i in range(pool_size):
detector = MultiModelViolationDetector(
forbidden_words_path=FORBIDDEN_WORDS_PATH,
ocr_config_path=OCR_CONFIG_PATH,
yolo_model_path=YOLO_MODEL_PATH,
known_faces_dir=KNOWN_FACES_DIR,
ocr_confidence_threshold=0.5
)
self.pool.put(detector)
print(f"[{get_current_time_str()}] 模型池初始化:第{i + 1}/{pool_size}个模型加载完成")
def get_model(self) -> MultiModelViolationDetector:
"""从池子里获取模型(阻塞直到有可用实例)"""
with self.lock:
return self.pool.get()
def return_model(self, detector: MultiModelViolationDetector):
"""将模型归还给池子"""
with self.lock:
self.pool.put(detector)
# 初始化模型池(程序启动时加载所有模型,显存会一次性占用 MODEL_POOL_SIZE * 单模型显存)
model_pool = ModelPool(pool_size=MODEL_POOL_SIZE)
# 工具函数:获取格式化时间字符串
2025-09-04 12:29:27 +08:00
def get_current_time_str() -> str:
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
def get_current_time_file_str() -> str:
return datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
2025-09-02 18:51:50 +08:00
2025-09-04 12:29:27 +08:00
# 客户端连接封装
2025-09-02 18:51:50 +08:00
class ClientConnection:
def __init__(self, websocket: WebSocket, client_ip: str):
self.websocket = websocket
self.client_ip = client_ip
2025-09-03 16:27:53 +08:00
self.last_heartbeat = datetime.datetime.now()
2025-09-04 12:29:27 +08:00
self.frame_queue = asyncio.Queue(maxsize=FRAME_QUEUE_SIZE)
self.consumer_task: Optional[asyncio.Task] = None
2025-09-02 18:51:50 +08:00
2025-09-04 17:08:25 +08:00
# 从模型池获取专属模型(每个客户端独立占用一个模型实例)
self.detector = model_pool.get_model()
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:已获取模型池中的模型实例(显存独立)")
2025-09-02 18:51:50 +08:00
def update_heartbeat(self):
2025-09-04 17:08:25 +08:00
"""更新心跳时间"""
2025-09-02 18:51:50 +08:00
self.last_heartbeat = datetime.datetime.now()
2025-09-03 16:27:53 +08:00
def is_alive(self) -> bool:
2025-09-04 17:08:25 +08:00
"""判断客户端是否存活"""
2025-09-02 18:51:50 +08:00
timeout = (datetime.datetime.now() - self.last_heartbeat).total_seconds()
2025-09-03 16:27:53 +08:00
return timeout < HEARTBEAT_TIMEOUT
2025-09-02 18:51:50 +08:00
2025-09-03 17:08:28 +08:00
def start_consumer(self):
2025-09-04 12:29:27 +08:00
"""启动帧消费任务"""
2025-09-03 17:08:28 +08:00
self.consumer_task = asyncio.create_task(self.consume_frames())
return self.consumer_task
2025-09-04 17:08:25 +08:00
def release_model(self):
"""客户端断开时归还模型到池"""
model_pool.return_model(self.detector)
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:模型已归还至模型池(显存可复用)")
2025-09-04 12:29:27 +08:00
async def send_frame_permit(self):
2025-09-04 17:08:25 +08:00
"""发送帧发送许可信号"""
2025-09-03 18:05:34 +08:00
try:
2025-09-04 12:29:27 +08:00
frame_permit_msg = {
"type": "frame",
"timestamp": get_current_time_str(),
"client_ip": self.client_ip
2025-09-03 18:05:34 +08:00
}
2025-09-04 12:29:27 +08:00
await self.websocket.send_json(frame_permit_msg)
2025-09-04 17:08:25 +08:00
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:已发送帧发送许可信号")
2025-09-03 18:05:34 +08:00
except Exception as e:
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧许可信号发送失败 - {str(e)}")
2025-09-03 18:05:34 +08:00
2025-09-03 17:08:28 +08:00
async def consume_frames(self) -> None:
2025-09-04 17:08:25 +08:00
"""消费队列中的帧并处理(并行执行核心)"""
2025-09-03 17:08:28 +08:00
try:
while True:
2025-09-04 17:08:25 +08:00
# 1. 从队列取出帧
2025-09-03 17:08:28 +08:00
frame_data = await self.frame_queue.get()
2025-09-04 12:29:27 +08:00
2025-09-04 17:08:25 +08:00
# 2. 立即发送下一帧许可
await self.send_frame_permit()
2025-09-04 12:29:27 +08:00
2025-09-03 17:08:28 +08:00
try:
2025-09-04 17:08:25 +08:00
# 3. 并行处理帧用线程池执行AI检测真正并发
2025-09-03 17:08:28 +08:00
await self.process_frame(frame_data)
finally:
self.frame_queue.task_done()
2025-09-04 12:29:27 +08:00
2025-09-03 17:08:28 +08:00
except asyncio.CancelledError:
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧消费任务已取消")
2025-09-03 17:08:28 +08:00
except Exception as e:
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧消费逻辑错误 - {str(e)}")
2025-09-03 17:08:28 +08:00
async def process_frame(self, frame_data: bytes) -> None:
2025-09-04 17:08:25 +08:00
"""处理单帧图像数据(使用客户端专属模型)"""
2025-09-04 12:29:27 +08:00
# 二进制数据转OpenCV图像
2025-09-03 17:08:28 +08:00
nparr = np.frombuffer(frame_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
2025-09-04 12:29:27 +08:00
if img is None:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:无法解析图像数据")
return
2025-09-03 17:08:28 +08:00
2025-09-04 12:29:27 +08:00
# 确保图像保存目录存在
os.makedirs('images', exist_ok=True)
2025-09-03 17:08:28 +08:00
2025-09-04 17:08:25 +08:00
# 保存图像
2025-09-04 12:29:27 +08:00
filename = f"images/{self.client_ip.replace('.', '_')}_{get_current_time_file_str()}.jpg"
2025-09-03 17:08:28 +08:00
try:
cv2.imwrite(filename, img)
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 图像已保存至:{filename}")
2025-09-04 17:08:25 +08:00
# 关键修改:使用客户端专属模型 + 线程池并行执行AI检测
has_violation, violation_type, details = await asyncio.to_thread(
self.detector.detect_violations, # 客户端独立模型
img # 输入图像
)
2025-09-04 12:29:27 +08:00
if has_violation:
print(
f"[{get_current_time_str()}] 客户端{self.client_ip}:检测到违规 - 类型: {violation_type}, 详情: {details}")
# 调用违规次数加一方法
try:
await asyncio.to_thread(increment_alarm_count_by_ip, self.client_ip)
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数已+1")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数更新失败 - {str(e)}")
2025-09-04 17:08:25 +08:00
# 发送危险通知
2025-09-04 12:29:27 +08:00
danger_msg = {
"type": "danger",
"timestamp": get_current_time_str(),
"client_ip": self.client_ip
}
await self.websocket.send_json(danger_msg)
2025-09-03 17:08:28 +08:00
else:
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:未检测到违规")
2025-09-03 17:08:28 +08:00
except Exception as e:
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:图像处理错误 - {str(e)}")
2025-09-03 17:08:28 +08:00
2025-09-02 18:51:50 +08:00
2025-09-04 12:29:27 +08:00
# 全局状态管理
2025-09-02 18:51:50 +08:00
connected_clients: Dict[str, ClientConnection] = {}
2025-09-04 17:08:25 +08:00
client_lock = asyncio.Lock() # 保护connected_clients的锁
2025-09-02 18:51:50 +08:00
heartbeat_task: Optional[asyncio.Task] = None
2025-09-04 17:08:25 +08:00
# 心跳检查
2025-09-02 18:51:50 +08:00
async def heartbeat_checker():
while True:
2025-09-04 12:29:27 +08:00
current_time = get_current_time_str()
2025-09-04 17:08:25 +08:00
# 加锁保护字典遍历
async with client_lock:
timeout_ips = [ip for ip, conn in connected_clients.items() if not conn.is_alive()]
2025-09-03 16:27:53 +08:00
if timeout_ips:
2025-09-04 12:29:27 +08:00
print(f"[{current_time}] 心跳检查:{len(timeout_ips)}个客户端超时IP{timeout_ips}")
2025-09-03 16:27:53 +08:00
for ip in timeout_ips:
2025-09-02 18:51:50 +08:00
try:
2025-09-04 17:08:25 +08:00
async with client_lock:
conn = connected_clients.get(ip)
if not conn:
continue
if conn.consumer_task and not conn.consumer_task.done():
conn.consumer_task.cancel()
await conn.websocket.close(code=1008, reason="心跳超时")
# 归还模型
conn.release_model()
# 超时设为离线并记录
try:
await asyncio.to_thread(update_online_status_by_ip, ip, 0)
action_data = DeviceActionCreate(client_ip=ip, action=0)
await asyncio.to_thread(add_device_action, action_data)
print(f"[{current_time}] 客户端{ip}:已标记为离线并记录操作")
except Exception as e:
print(f"[{current_time}] 客户端{ip}:离线状态更新失败 - {str(e)}")
2025-09-02 18:51:50 +08:00
finally:
2025-09-04 17:08:25 +08:00
async with client_lock:
connected_clients.pop(ip, None)
2025-09-02 18:51:50 +08:00
else:
2025-09-04 17:08:25 +08:00
async with client_lock:
print(f"[{current_time}] 心跳检查:{len(connected_clients)}个客户端在线")
2025-09-02 18:51:50 +08:00
2025-09-03 16:27:53 +08:00
await asyncio.sleep(HEARTBEAT_INTERVAL)
2025-09-02 18:51:50 +08:00
2025-09-04 12:29:27 +08:00
# 应用生命周期管理
2025-09-02 18:51:50 +08:00
@asynccontextmanager
async def lifespan(app: FastAPI):
global heartbeat_task
heartbeat_task = asyncio.create_task(heartbeat_checker())
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 全局心跳检查任务启动任务ID{id(heartbeat_task)}")
2025-09-03 16:27:53 +08:00
yield
2025-09-02 18:51:50 +08:00
if heartbeat_task and not heartbeat_task.done():
heartbeat_task.cancel()
try:
2025-09-02 21:52:28 +08:00
await heartbeat_task
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 全局心跳检查任务已取消")
2025-09-02 18:51:50 +08:00
except asyncio.CancelledError:
2025-09-03 16:27:53 +08:00
pass
2025-09-02 18:51:50 +08:00
2025-09-04 12:29:27 +08:00
# 消息处理工具函数
async def send_heartbeat_ack(conn: ClientConnection):
2025-09-02 18:51:50 +08:00
try:
2025-09-04 12:29:27 +08:00
heartbeat_ack_msg = {
"type": "heart",
"timestamp": get_current_time_str(),
"client_ip": conn.client_ip
2025-09-03 16:27:53 +08:00
}
2025-09-04 12:29:27 +08:00
await conn.websocket.send_json(heartbeat_ack_msg)
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:已发送心跳确认")
2025-09-02 18:51:50 +08:00
return True
2025-09-04 12:29:27 +08:00
except Exception as e:
2025-09-04 17:08:25 +08:00
async with client_lock:
connected_clients.pop(conn.client_ip, None)
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:心跳确认发送失败 - {str(e)}")
2025-09-02 18:51:50 +08:00
return False
2025-09-04 12:29:27 +08:00
async def handle_text_msg(conn: ClientConnection, text: str):
2025-09-02 21:52:28 +08:00
try:
2025-09-03 16:27:53 +08:00
msg = json.loads(text)
2025-09-04 12:29:27 +08:00
if msg.get("type") == "heart":
2025-09-03 16:27:53 +08:00
conn.update_heartbeat()
2025-09-04 12:29:27 +08:00
await send_heartbeat_ack(conn)
2025-09-03 16:27:53 +08:00
else:
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:未知文本消息类型({msg.get('type')}")
2025-09-03 16:27:53 +08:00
except json.JSONDecodeError:
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}无效JSON文本消息")
2025-09-02 21:52:28 +08:00
2025-09-04 12:29:27 +08:00
async def handle_binary_msg(conn: ClientConnection, data: bytes):
2025-09-03 17:08:28 +08:00
try:
conn.frame_queue.put_nowait(data)
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:图像数据({len(data)}字节)已加入队列")
2025-09-03 17:08:28 +08:00
except asyncio.QueueFull:
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:帧队列已满,丢弃当前图像数据")
# WebSocket路由配置
ws_router = APIRouter()
2025-09-03 17:08:28 +08:00
2025-09-02 21:52:28 +08:00
2025-09-03 16:27:53 +08:00
@ws_router.websocket(WS_ENDPOINT)
2025-09-02 18:51:50 +08:00
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
2025-09-04 12:29:27 +08:00
client_ip = websocket.client.host if websocket.client else "unknown_ip"
current_time = get_current_time_str()
print(f"[{current_time}] 客户端{client_ip}WebSocket连接已建立")
is_online_updated = False
2025-09-04 17:08:25 +08:00
new_conn = None
2025-09-02 18:51:50 +08:00
try:
2025-09-04 12:29:27 +08:00
# 处理重复连接
2025-09-04 17:08:25 +08:00
async with client_lock:
if client_ip in connected_clients:
old_conn = connected_clients[client_ip]
if old_conn.consumer_task and not old_conn.consumer_task.done():
old_conn.consumer_task.cancel()
await old_conn.websocket.close(code=1008, reason="同一IP新连接建立")
old_conn.release_model() # 归还旧连接的模型
connected_clients.pop(client_ip)
print(f"[{current_time}] 客户端{client_ip}:已关闭旧连接并回收模型")
2025-09-03 16:27:53 +08:00
# 注册新连接
new_conn = ClientConnection(websocket, client_ip)
2025-09-04 17:08:25 +08:00
async with client_lock:
connected_clients[client_ip] = new_conn
2025-09-04 12:29:27 +08:00
new_conn.start_consumer()
2025-09-04 17:08:25 +08:00
# 初始许可:连接建立后立即发一次
2025-09-04 12:29:27 +08:00
await new_conn.send_frame_permit()
2025-09-03 17:08:28 +08:00
2025-09-04 12:29:27 +08:00
# 标记上线并记录
try:
await asyncio.to_thread(update_online_status_by_ip, client_ip, 1)
action_data = DeviceActionCreate(client_ip=client_ip, action=1)
await asyncio.to_thread(add_device_action, action_data)
print(f"[{current_time}] 客户端{client_ip}:已标记为在线并记录操作")
is_online_updated = True
except Exception as e:
print(f"[{current_time}] 客户端{client_ip}:上线状态更新失败 - {str(e)}")
2025-09-04 17:08:25 +08:00
async with client_lock:
print(f"[{current_time}] 客户端{client_ip}:新连接注册成功,在线数:{len(connected_clients)}")
2025-09-03 16:27:53 +08:00
2025-09-04 12:29:27 +08:00
# 消息循环
2025-09-02 18:51:50 +08:00
while True:
2025-09-03 16:27:53 +08:00
data = await websocket.receive()
if "text" in data:
2025-09-04 12:29:27 +08:00
await handle_text_msg(new_conn, data["text"])
2025-09-03 16:27:53 +08:00
elif "bytes" in data:
2025-09-04 12:29:27 +08:00
await handle_binary_msg(new_conn, data["bytes"])
2025-09-02 18:51:50 +08:00
except WebSocketDisconnect as e:
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{client_ip}:主动断开连接(代码:{e.code}")
2025-09-02 18:51:50 +08:00
except Exception as e:
2025-09-04 12:29:27 +08:00
print(f"[{get_current_time_str()}] 客户端{client_ip}:连接异常 - {str(e)[:50]}")
2025-09-02 18:51:50 +08:00
finally:
2025-09-04 12:29:27 +08:00
# 清理资源并标记离线
2025-09-04 17:08:25 +08:00
if new_conn and client_ip in connected_clients:
async with client_lock:
conn = connected_clients.get(client_ip)
if conn:
if conn.consumer_task and not conn.consumer_task.done():
conn.consumer_task.cancel()
2025-09-04 12:29:27 +08:00
2025-09-04 17:08:25 +08:00
# 归还模型到模型池
conn.release_model()
# 主动/异常断开时标记离线
if is_online_updated:
try:
await asyncio.to_thread(update_online_status_by_ip, client_ip, 0)
action_data = DeviceActionCreate(client_ip=client_ip, action=0)
await asyncio.to_thread(add_device_action, action_data)
print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后已标记为离线")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后离线更新失败 - {str(e)}")
connected_clients.pop(client_ip, None)
async with client_lock:
print(f"[{get_current_time_str()}] 客户端{client_ip}:资源已清理,在线数:{len(connected_clients)}")
# 创建FastAPI应用
app = FastAPI(lifespan=lifespan)
app.include_router(ws_router)
if __name__ == "__main__":
import uvicorn
2025-09-04 12:29:27 +08:00
2025-09-04 17:08:25 +08:00
uvicorn.run(app, host="0.0.0.0", port=8000)