Files
video/rtc/rtc.py

140 lines
4.8 KiB
Python
Raw Normal View History

2025-09-02 19:46:34 +08:00
import asyncio
import aiohttp
2025-09-02 20:14:40 +08:00
import cv2 # 导入OpenCV库
import numpy as np
2025-09-02 19:46:34 +08:00
from aiortc import RTCPeerConnection, RTCSessionDescription, RTCConfiguration
from aiortc.mediastreams import MediaStreamTrack
2025-09-02 21:30:28 +08:00
from ocr.ocr_violation_detector import OCRViolationDetector
2025-09-02 19:46:34 +08:00
class VideoTrack(MediaStreamTrack):
kind = "video"
def __init__(self, max_frames=1):
super().__init__()
self.frames = asyncio.Queue(maxsize=max_frames)
async def recv(self):
return await super().recv()
async def rtc_frame_receiver(url, frame_queue):
"""
2025-09-02 20:14:40 +08:00
对每帧进行检查只要接收到 RTC 帧且队列为空就往队列放入cv2格式的帧数据
2025-09-02 19:46:34 +08:00
"""
pc = RTCPeerConnection(RTCConfiguration(iceServers=[]))
video_track = VideoTrack()
pc.addTrack(video_track)
# 累计帧计数器
total_frames = 0
@pc.on("track")
async def on_track(track):
nonlocal total_frames
if track.kind == "video":
print("接收到视频轨道、开始接收视频帧")
while True:
# 接收当前帧并累计计数
frame = await track.recv()
2025-09-02 20:14:40 +08:00
# 转换为cv2兼容的BGR格式numpy数组
frame_cv2 = frame.to_ndarray(format='bgr24')
# 验证是否为cv2兼容格式
if isinstance(frame_cv2, np.ndarray) and frame_cv2.ndim == 3 and frame_cv2.shape[2] == 3:
total_frames += 1
# 对每帧都检查队列状态、队列为空则放入
if frame_queue.empty():
# 队列为空、放入当前cv2帧
await frame_queue.put(frame_cv2)
2025-09-02 21:30:28 +08:00
# print(f"第{total_frames}帧队列为空、已放入新的cv2帧尺寸: {frame_cv2.shape}")
2025-09-02 20:14:40 +08:00
else:
# 队列非空、说明上一帧还未处理、跳过当前帧
print(f"{total_frames}帧:队列非空、跳过该帧")
2025-09-02 19:46:34 +08:00
else:
2025-09-02 20:14:40 +08:00
print("帧格式转换失败不是有效的cv2格式")
2025-09-02 19:46:34 +08:00
# 创建并设置本地offer
offer = await pc.createOffer()
print("已创建本地 SDP Offer")
await pc.setLocalDescription(offer)
# 发送offer到服务器
async with aiohttp.ClientSession() as session:
print("开始向服务器发送 SDP Offer")
async with session.post(
url,
data=offer.sdp.encode(),
headers={
"Content-Type": "application/sdp",
"Content-Length": str(len(offer.sdp))
},
ssl=False
) as response:
print("已接收到服务器的响应、开始处理 SDP Answer")
answer_sdp = await response.text()
await pc.setRemoteDescription(RTCSessionDescription(sdp=answer_sdp, type='answer'))
try:
# 保持连接
while True:
await asyncio.sleep(1)
except KeyboardInterrupt:
print("用户中断")
finally:
print("开始关闭 RTCPeerConnection")
await pc.close()
print("已关闭 RTCPeerConnection")
async def frame_consumer(frame_queue):
"""
2025-09-02 20:14:40 +08:00
从队列中读取cv2帧并处理队列空时会阻塞等待
2025-09-02 19:46:34 +08:00
Args: frame_queue: 帧队列
"""
2025-09-02 21:30:28 +08:00
# 创建OCR检测器实例请替换为实际的违禁词文件路径
ocr_detector = OCRViolationDetector(
forbidden_words_path=r"D:\Git\bin\video\ocr\forbidden_words.txt", # 替换为实际路径
ocr_confidence_threshold=0.5,)
2025-09-02 19:46:34 +08:00
while True:
2025-09-02 20:14:40 +08:00
# 从队列中获取cv2帧队列为空时会阻塞等待新帧
2025-09-02 19:46:34 +08:00
current_frame = await frame_queue.get()
2025-09-02 21:35:24 +08:00
has_violation, words, confidences = ocr_detector.detect(current_frame)
# 输出所有检测到的违禁词
if has_violation:
print(f"测试结果:图片中共检测到 {len(words)} 个违禁词:")
for word, conf in zip(words, confidences):
print(f"- {word}(置信度:{conf:.4f}")
else:
print("测试结果:图片中未检测到违禁词")
2025-09-02 19:46:34 +08:00
# 标记任务完成
frame_queue.task_done()
2025-09-02 21:30:28 +08:00
# print("帧处理完成、队列已清空")
2025-09-02 19:46:34 +08:00
async def main():
# WebRTC服务器地址
url = "http://192.168.110.25:1985/rtc/v1/whep/?app=live&stream=677a4845aa48cb8526c811ad56fc5e60"
# 创建队列
frame_queue = asyncio.Queue(maxsize=1)
# 创建任务
receiver_task = asyncio.create_task(rtc_frame_receiver(url, frame_queue))
consumer_task = asyncio.create_task(frame_consumer(frame_queue))
# 等待任务完成
await asyncio.gather(receiver_task, consumer_task)
if __name__ == "__main__":
2025-09-02 20:14:40 +08:00
try:
asyncio.run(main())
finally:
# 确保关闭所有cv2窗口
cv2.destroyAllWindows()