-
WebSocket 测试工具
-
-
-
-
连接状态:
-
未连接
-
服务地址:
-
ws://192.168.110.25:8000/ws
-
连接时间:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
发送自定义消息
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/ws/ws.py b/ws/ws.py
index f125018..5f6571c 100644
--- a/ws/ws.py
+++ b/ws/ws.py
@@ -4,314 +4,300 @@ import json
import os
from contextlib import asynccontextmanager
from typing import Dict, Optional, AsyncGenerator
-from concurrent.futures import ThreadPoolExecutor # 新增:显式线程池
-
from service.device_service import update_online_status_by_ip, increment_alarm_count_by_ip
from service.device_action_service import add_device_action
from schema.device_action_schema import DeviceActionCreate
+from core.all import detect
import cv2
import numpy as np
from fastapi import WebSocket, APIRouter, WebSocketDisconnect, FastAPI
-from queue import Queue # 线程安全队列,无需额外Lock
+from core.all import load_model
-from ocr.model_violation_detector import MultiModelViolationDetector
-
-# -------------------------- 配置调整 --------------------------
-# 模型路径(建议改为环境变量)
-YOLO_MODEL_PATH = r"D:\Git\bin\video\ocr\models\best.pt"
-OCR_CONFIG_PATH = r"D:\Git\bin\video\ocr\config\1.yaml"
-
-# 核心优化:模型池大小(决定最大并发任务数,显存占用=大小×单模型显存)
-MODEL_POOL_SIZE = 5 # 示例:设为5,支持5个任务并行,显存会明显上升
-THREAD_POOL_SIZE = MODEL_POOL_SIZE * 2 # 线程池大小≥模型池,避免线程瓶颈
-
-# 其他配置
-HEARTBEAT_INTERVAL = 30 # 心跳间隔(秒)
+# 配置常量
+HEARTBEAT_INTERVAL = 30 # 心跳检查间隔(秒)
HEARTBEAT_TIMEOUT = 600 # 客户端超时阈值(秒)
-WS_ENDPOINT = "/ws" # WebSocket端点
-FRAME_QUEUE_SIZE = 5 # 增大帧队列,允许缓存更多帧(避免丢帧)
+WS_ENDPOINT = "/ws" # WebSocket端点路径
+FRAME_QUEUE_SIZE = 1 # 帧队列大小限制
-# -------------------------- 工具函数 --------------------------
+
+# 工具函数:获取格式化时间字符串(统一时间戳格式)
def get_current_time_str() -> str:
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
+
def get_current_time_file_str() -> str:
return datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
-# -------------------------- 模型池重构(核心修改1) --------------------------
-class ModelPool:
- def __init__(self, pool_size: int = MODEL_POOL_SIZE):
- self.pool = Queue(maxsize=pool_size)
- # 移除冗余Lock:Queue.get()/put()本身线程安全
- self._init_models(pool_size)
- print(f"[{get_current_time_str()}] 模型池初始化完成(共{pool_size}个实例,显存已预分配)")
- def _init_models(self, pool_size: int):
- """预加载所有模型实例(初始化时显存会一次性上升)"""
- for i in range(pool_size):
- try:
- detector = MultiModelViolationDetector(
- ocr_config_path=OCR_CONFIG_PATH,
- yolo_model_path=YOLO_MODEL_PATH,
- ocr_confidence_threshold=0.5
- )
- self.pool.put(detector)
- print(f"[{get_current_time_str()}] 模型实例{i+1}/{pool_size}加载完成")
- except Exception as e:
- raise RuntimeError(f"模型实例{i+1}加载失败:{str(e)}")
-
- def get_model(self) -> MultiModelViolationDetector:
- """获取模型(阻塞直到有空闲实例,确保并发安全)"""
- return self.pool.get()
-
- def return_model(self, detector: MultiModelViolationDetector):
- """归还模型(立即释放资源供其他任务使用)"""
- self.pool.put(detector)
-
-# -------------------------- 全局资源初始化 --------------------------
-model_pool = ModelPool(pool_size=MODEL_POOL_SIZE) # 初始化模型池(预占显存)
-thread_pool = ThreadPoolExecutor( # 显式创建线程池(核心修改2)
- max_workers=THREAD_POOL_SIZE,
- thread_name_prefix="ModelWorker-" # 线程命名,便于调试
-)
-
-# -------------------------- 客户端连接封装(核心修改3) --------------------------
+# 客户端连接封装
class ClientConnection:
def __init__(self, websocket: WebSocket, client_ip: str):
self.websocket = websocket
self.client_ip = client_ip
self.last_heartbeat = datetime.datetime.now()
- self.frame_queue = asyncio.Queue(maxsize=FRAME_QUEUE_SIZE) # 增大队列
+ self.frame_queue = asyncio.Queue(maxsize=FRAME_QUEUE_SIZE)
self.consumer_task: Optional[asyncio.Task] = None
- # 移除“客户端独占模型”:不再持有detector属性
def update_heartbeat(self):
+ """更新心跳时间(客户端发送心跳时调用)"""
self.last_heartbeat = datetime.datetime.now()
def is_alive(self) -> bool:
+ """判断客户端是否存活(心跳超时检查)"""
timeout = (datetime.datetime.now() - self.last_heartbeat).total_seconds()
return timeout < HEARTBEAT_TIMEOUT
def start_consumer(self):
- """启动帧消费任务(每个客户端一个独立任务)"""
+ """启动帧消费任务"""
self.consumer_task = asyncio.create_task(self.consume_frames())
return self.consumer_task
async def send_frame_permit(self):
- """发送帧许可信号(允许客户端继续发帧)"""
+ """
+ 发送「帧发送许可信号」
+ 通知客户端可发送下一帧图像
+ """
try:
- await self.websocket.send_json({
+ frame_permit_msg = {
"type": "frame",
"timestamp": get_current_time_str(),
"client_ip": self.client_ip
- })
+ }
+ await self.websocket.send_json(frame_permit_msg)
+ print(f"[{get_current_time_str()}] 客户端{self.client_ip}:已发送帧发送许可信号(取帧后立即通知)")
except Exception as e:
- print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧许可发送失败 - {str(e)}")
+ print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧许可信号发送失败 - {str(e)}")
async def consume_frames(self) -> None:
- """消费帧队列(并发核心:每帧临时借模型处理)"""
+ """消费队列中的帧并处理(核心调整:取帧后立即发许可,再处理帧)"""
try:
while True:
- # 1. 从队列取帧(无帧时阻塞)
+ # 1. 从队列取出帧(阻塞直到有帧可用)
frame_data = await self.frame_queue.get()
- # 2. 立即发送下一帧许可(让客户端持续发帧,积累并发任务)
- await self.send_frame_permit()
+
+ # -------------------------- 核心修改:取出帧后立即发送下一帧许可 --------------------------
+ await self.send_frame_permit() # 取帧即通知客户端发下一帧,无需等处理完成
+ # -----------------------------------------------------------------------------------------
+
try:
- # 3. 并行处理帧(核心:任务级借模型)
+ # 2. 处理取出的帧(即使处理慢,客户端也已收到许可,可提前准备下一帧)
await self.process_frame(frame_data)
finally:
- self.frame_queue.task_done() # 标记帧处理完成
+ # 3. 标记帧任务完成(无论处理成功/失败,都需清理队列)
+ self.frame_queue.task_done()
+
except asyncio.CancelledError:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧消费任务已取消")
except Exception as e:
- print(f"[{get_current_time_str()}] 客户端{self.client_ip}:消费逻辑错误 - {str(e)}")
+ print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧消费逻辑错误 - {str(e)}")
async def process_frame(self, frame_data: bytes) -> None:
- """处理单帧(核心修改4:任务级借还模型)"""
- # 1. 临时借用模型(阻塞直到有空闲实例,显存随借用数上升)
- detector = model_pool.get_model()
+ """处理单帧图像数据(检测违规后发送危险通知 + 调用违规次数加一方法)"""
+ # 二进制数据转OpenCV图像
+ nparr = np.frombuffer(frame_data, np.uint8)
+ img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
+ if img is None:
+ print(f"[{get_current_time_str()}] 客户端{self.client_ip}:无法解析图像数据")
+ return
+
+ # 确保图像保存目录存在
+ os.makedirs('images', exist_ok=True)
+
+ # 保存图像(按IP+时间戳命名,避免冲突)
+ filename = f"images/{self.client_ip.replace('.', '_')}_{get_current_time_file_str()}.jpg"
try:
- # 2. 二进制转OpenCV图像
- nparr = np.frombuffer(frame_data, np.uint8)
- img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
- if img is None:
- print(f"[{get_current_time_str()}] 客户端{self.client_ip}:图像解析失败")
- return
-
- # 3. 保存图像(可选)
- os.makedirs('images', exist_ok=True)
- filename = f"images/{self.client_ip.replace('.', '_')}_{get_current_time_file_str()}.jpg"
cv2.imwrite(filename, img)
-
- # 4. 显式线程池执行AI检测(真正并发,无线程瓶颈)
- loop = asyncio.get_running_loop()
- has_violation, violation_type, details = await loop.run_in_executor(
- thread_pool, # 用自定义线程池,避免默认线程不足
- detector.detect_violations, # 临时借用的模型
- img # 输入图像
- )
-
- # 5. 违规处理(与原逻辑一致)
+ print(f"[{get_current_time_str()}] 图像已保存至:{filename}")
+ has_violation, data, type = detect(img)
+ print(has_violation)
+ print(type)
+ print(data)
if has_violation:
- print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规 - {violation_type}")
- # 违规次数更新(用线程池避免阻塞事件循环)
- await loop.run_in_executor(thread_pool, increment_alarm_count_by_ip, self.client_ip)
- # 发送危险通知
- await self.websocket.send_json({
+ print(
+ f"[{get_current_time_str()}] 客户端{self.client_ip}:检测到违规 - 类型: {type}, 详情: {data}")
+
+ # 调用违规次数加一方法
+ try:
+ await asyncio.to_thread(increment_alarm_count_by_ip, self.client_ip)
+ print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数已+1")
+ except Exception as e:
+ print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数更新失败 - {str(e)}")
+
+ # 发送「危险通知」
+ danger_msg = {
"type": "danger",
"timestamp": get_current_time_str(),
- "client_ip": self.client_ip,
- "violation_type": violation_type,
- "details": details
- })
+ "client_ip": self.client_ip
+ }
+ await self.websocket.send_json(danger_msg)
else:
- print(f"[{get_current_time_str()}] 客户端{self.client_ip}:无违规")
+ print(f"[{get_current_time_str()}] 客户端{self.client_ip}:未检测到违规")
except Exception as e:
- print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧处理错误 - {str(e)}")
- finally:
- # 6. 无论成功/失败,强制归还模型(核心:释放资源供其他任务使用)
- model_pool.return_model(detector)
- print(f"[{get_current_time_str()}] 客户端{self.client_ip}:模型已归还(可复用)")
+ print(f"[{get_current_time_str()}] 客户端{self.client_ip}:图像处理错误 - {str(e)}")
-# -------------------------- 全局状态与心跳 --------------------------
+
+# 全局状态管理
connected_clients: Dict[str, ClientConnection] = {}
-client_lock = asyncio.Lock() # 保护客户端字典的异步锁
heartbeat_task: Optional[asyncio.Task] = None
+
+# 心跳检查(定时清理超时客户端 + 调用离线状态更新方法)
async def heartbeat_checker():
- """心跳检查(移除模型归还逻辑,因模型已任务级归还)"""
while True:
current_time = get_current_time_str()
- async with client_lock:
- # 筛选超时客户端
- timeout_ips = [ip for ip, conn in connected_clients.items() if not conn.is_alive()]
+ timeout_ips = [ip for ip, conn in connected_clients.items() if not conn.is_alive()]
- for ip in timeout_ips:
- async with client_lock:
- conn = connected_clients.get(ip)
- if not conn:
- continue
- # 取消消费任务+关闭连接
- if conn.consumer_task and not conn.consumer_task.done():
- conn.consumer_task.cancel()
- await conn.websocket.close(code=1008, reason="心跳超时")
- # 标记离线(用线程池)
- loop = asyncio.get_running_loop()
- await loop.run_in_executor(thread_pool, update_online_status_by_ip, ip, 0)
- await loop.run_in_executor(
- thread_pool, add_device_action, DeviceActionCreate(client_ip=ip, action=0)
- )
- connected_clients.pop(ip)
- print(f"[{current_time}] 客户端{ip}:超时离线(资源已清理)")
+ if timeout_ips:
+ print(f"[{current_time}] 心跳检查:{len(timeout_ips)}个客户端超时(IP:{timeout_ips})")
+ for ip in timeout_ips:
+ try:
+ conn = connected_clients[ip]
+ if conn.consumer_task and not conn.consumer_task.done():
+ conn.consumer_task.cancel()
+ await conn.websocket.close(code=1008, reason="心跳超时")
- # 打印在线状态
- async with client_lock:
+ # 超时设为离线并记录
+ try:
+ await asyncio.to_thread(update_online_status_by_ip, ip, 0)
+ action_data = DeviceActionCreate(client_ip=ip, action=0)
+ await asyncio.to_thread(add_device_action, action_data)
+ print(f"[{current_time}] 客户端{ip}:已标记为离线并记录操作")
+ except Exception as e:
+ print(f"[{current_time}] 客户端{ip}:离线状态更新失败 - {str(e)}")
+ finally:
+ connected_clients.pop(ip, None)
+ else:
print(f"[{current_time}] 心跳检查:{len(connected_clients)}个客户端在线")
+
await asyncio.sleep(HEARTBEAT_INTERVAL)
-# -------------------------- 应用生命周期(核心修改5:管理线程池) --------------------------
+
+# 应用生命周期管理
@asynccontextmanager
async def lifespan(app: FastAPI):
global heartbeat_task
- # 启动心跳任务
heartbeat_task = asyncio.create_task(heartbeat_checker())
- print(f"[{get_current_time_str()}] 心跳任务启动(ID:{id(heartbeat_task)})")
- print(f"[{get_current_time_str()}] 线程池启动(最大线程数:{THREAD_POOL_SIZE})")
- yield # 应用运行期间
- # 清理资源
+ print(f"[{get_current_time_str()}] 全局心跳检查任务启动(任务ID:{id(heartbeat_task)})")
+ yield
if heartbeat_task and not heartbeat_task.done():
heartbeat_task.cancel()
- await heartbeat_task
- print(f"[{get_current_time_str()}] 心跳任务已关闭")
- # 关闭线程池(等待所有任务完成)
- thread_pool.shutdown(wait=True)
- print(f"[{get_current_time_str()}] 线程池已关闭")
+ try:
+ await heartbeat_task
+ print(f"[{get_current_time_str()}] 全局心跳检查任务已取消")
+ except asyncio.CancelledError:
+ pass
-# -------------------------- WebSocket路由 --------------------------
+
+# 消息处理工具函数
+async def send_heartbeat_ack(conn: ClientConnection):
+ try:
+ heartbeat_ack_msg = {
+ "type": "heart",
+ "timestamp": get_current_time_str(),
+ "client_ip": conn.client_ip
+ }
+ await conn.websocket.send_json(heartbeat_ack_msg)
+ print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:已发送心跳确认")
+ return True
+ except Exception as e:
+ connected_clients.pop(conn.client_ip, None)
+ print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:心跳确认发送失败 - {str(e)}")
+ return False
+
+
+async def handle_text_msg(conn: ClientConnection, text: str):
+ try:
+ msg = json.loads(text)
+ if msg.get("type") == "heart":
+ conn.update_heartbeat()
+ await send_heartbeat_ack(conn)
+ else:
+ print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:未知文本消息类型({msg.get('type')})")
+ except json.JSONDecodeError:
+ print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:无效JSON文本消息")
+
+
+async def handle_binary_msg(conn: ClientConnection, data: bytes):
+ try:
+ conn.frame_queue.put_nowait(data)
+ print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:图像数据({len(data)}字节)已加入队列")
+ except asyncio.QueueFull:
+ print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:帧队列已满,丢弃当前图像数据")
+
+
+# WebSocket路由配置
ws_router = APIRouter()
+
@ws_router.websocket(WS_ENDPOINT)
async def websocket_endpoint(websocket: WebSocket):
+ # 加载模型
+ load_model()
await websocket.accept()
client_ip = websocket.client.host if websocket.client else "unknown_ip"
current_time = get_current_time_str()
- print(f"[{current_time}] 客户端{client_ip}:连接建立")
+ print(f"[{current_time}] 客户端{client_ip}:WebSocket连接已建立")
- new_conn = None
is_online_updated = False
- try:
- # 处理重复连接(关闭旧连接)
- async with client_lock:
- if client_ip in connected_clients:
- old_conn = connected_clients[client_ip]
- if old_conn.consumer_task and not old_conn.consumer_task.done():
- old_conn.consumer_task.cancel()
- await old_conn.websocket.close(code=1008, reason="新连接抢占")
- connected_clients.pop(client_ip)
- print(f"[{current_time}] 客户端{client_ip}:旧连接已关闭")
- # 创建新连接+启动消费任务
+ try:
+ # 处理重复连接
+ if client_ip in connected_clients:
+ old_conn = connected_clients[client_ip]
+ if old_conn.consumer_task and not old_conn.consumer_task.done():
+ old_conn.consumer_task.cancel()
+ await old_conn.websocket.close(code=1008, reason="同一IP新连接建立")
+ connected_clients.pop(client_ip)
+ print(f"[{current_time}] 客户端{client_ip}:已关闭旧连接")
+
+ # 注册新连接
new_conn = ClientConnection(websocket, client_ip)
+ connected_clients[client_ip] = new_conn
new_conn.start_consumer()
- # 初始发送帧许可(让客户端立即发帧)
+ # 初始许可:连接建立后立即发一次,让客户端知道可发第一帧(后续靠取帧后自动发)
await new_conn.send_frame_permit()
- # 标记客户端在线
- loop = asyncio.get_running_loop()
- await loop.run_in_executor(thread_pool, update_online_status_by_ip, client_ip, 1)
- await loop.run_in_executor(
- thread_pool, add_device_action, DeviceActionCreate(client_ip=client_ip, action=1)
- )
- is_online_updated = True
- async with client_lock:
- connected_clients[client_ip] = new_conn
- print(f"[{current_time}] 客户端{client_ip}:注册成功(在线数:{len(connected_clients)})")
+ # 标记上线并记录
+ try:
+ await asyncio.to_thread(update_online_status_by_ip, client_ip, 1)
+ action_data = DeviceActionCreate(client_ip=client_ip, action=1)
+ await asyncio.to_thread(add_device_action, action_data)
+ print(f"[{current_time}] 客户端{client_ip}:已标记为在线并记录操作")
+ is_online_updated = True
+ except Exception as e:
+ print(f"[{current_time}] 客户端{client_ip}:上线状态更新失败 - {str(e)}")
- # 消息循环(接收文本/二进制帧)
+ print(f"[{current_time}] 客户端{client_ip}:新连接注册成功,在线数:{len(connected_clients)}")
+
+ # 消息循环
while True:
data = await websocket.receive()
if "text" in data:
- # 处理文本消息(如心跳)
- try:
- msg = json.loads(data["text"])
- if msg.get("type") == "heart":
- new_conn.update_heartbeat()
- # 回复心跳确认
- await websocket.send_json({
- "type": "heart",
- "timestamp": get_current_time_str(),
- "client_ip": client_ip
- })
- except json.JSONDecodeError:
- print(f"[{get_current_time_str()}] 客户端{client_ip}:无效JSON")
+ await handle_text_msg(new_conn, data["text"])
elif "bytes" in data:
- # 处理二进制帧(图像)
- try:
- await new_conn.frame_queue.put(data["bytes"])
- print(f"[{get_current_time_str()}] 客户端{client_ip}:帧已入队(队列大小:{new_conn.frame_queue.qsize()})")
- except asyncio.QueueFull:
- print(f"[{get_current_time_str()}] 客户端{client_ip}:帧队列满(丢弃当前帧)")
+ await handle_binary_msg(new_conn, data["bytes"])
except WebSocketDisconnect as e:
- print(f"[{get_current_time_str()}] 客户端{client_ip}:主动断开(代码:{e.code})")
+ print(f"[{get_current_time_str()}] 客户端{client_ip}:主动断开连接(代码:{e.code})")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{client_ip}:连接异常 - {str(e)[:50]}")
finally:
- # 清理资源(无需归还模型,已在process_frame中归还)
- if new_conn and client_ip in connected_clients:
- async with client_lock:
- conn = connected_clients.get(client_ip)
- if conn:
- if conn.consumer_task and not conn.consumer_task.done():
- conn.consumer_task.cancel()
- # 标记离线(仅当在线状态已更新时)
- if is_online_updated:
- loop = asyncio.get_running_loop()
- await loop.run_in_executor(thread_pool, update_online_status_by_ip, client_ip, 0)
- await loop.run_in_executor(
- thread_pool, add_device_action, DeviceActionCreate(client_ip=client_ip, action=0)
- )
- connected_clients.pop(client_ip)
- async with client_lock:
- print(f"[{get_current_time_str()}] 客户端{client_ip}:资源清理完成(在线数:{len(connected_clients)})")
+ # 清理资源并标记离线
+ if client_ip in connected_clients:
+ conn = connected_clients[client_ip]
+ if conn.consumer_task and not conn.consumer_task.done():
+ conn.consumer_task.cancel()
+
+ # 主动/异常断开时标记离线
+ if is_online_updated:
+ try:
+ await asyncio.to_thread(update_online_status_by_ip, client_ip, 0)
+ action_data = DeviceActionCreate(client_ip=client_ip, action=0)
+ await asyncio.to_thread(add_device_action, action_data)
+ print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后已标记为离线")
+ except Exception as e:
+ print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后离线更新失败 - {str(e)}")
+
+ connected_clients.pop(client_ip, None)
+ print(f"[{get_current_time_str()}] 客户端{client_ip}:资源已清理,在线数:{len(connected_clients)}")