目前可以成功动态更换模型运行的
This commit is contained in:
		| @ -4,6 +4,11 @@ import insightface | ||||
| from insightface.app import FaceAnalysis | ||||
| from io import BytesIO | ||||
| from PIL import Image | ||||
| import logging | ||||
|  | ||||
| # 配置日志(便于排查) | ||||
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - [FaceUtil] - %(levelname)s - %(message)s') | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
| # 全局变量存储InsightFace引擎和特征列表 | ||||
| _insightface_app = None | ||||
| @ -11,135 +16,141 @@ _feature_list = [] | ||||
|  | ||||
|  | ||||
| def init_insightface(): | ||||
|     """初始化InsightFace引擎""" | ||||
|     """初始化InsightFace引擎(确保成功后再使用)""" | ||||
|     global _insightface_app | ||||
|     try: | ||||
|         print("正在初始化InsightFace引擎...") | ||||
|         app = FaceAnalysis(name='buffalo_l', root='~/.insightface') | ||||
|         app.prepare(ctx_id=0, det_size=(640, 640)) | ||||
|         print("InsightFace引擎初始化完成") | ||||
|         if _insightface_app is not None: | ||||
|             logger.info("InsightFace引擎已初始化,无需重复执行") | ||||
|             return _insightface_app | ||||
|  | ||||
|         logger.info("正在初始化InsightFace引擎(模型:buffalo_l)...") | ||||
|         # 手动指定模型下载路径(避免权限问题,可选) | ||||
|         app = FaceAnalysis( | ||||
|             name='buffalo_l', | ||||
|             root='~/.insightface',  # 模型默认下载路径 | ||||
|             providers=['CPUExecutionProvider']  # 强制用CPU(若有GPU可加'CUDAExecutionProvider') | ||||
|         ) | ||||
|         app.prepare(ctx_id=0, det_size=(640, 640))  # det_size越大,小人脸检测越准 | ||||
|         logger.info("InsightFace引擎初始化完成") | ||||
|         _insightface_app = app | ||||
|         return app | ||||
|     except Exception as e: | ||||
|         print(f"InsightFace初始化失败: {e}") | ||||
|         logger.error(f"InsightFace初始化失败:{str(e)}", exc_info=True)  # 打印详细堆栈 | ||||
|         _insightface_app = None | ||||
|         return None | ||||
|  | ||||
|  | ||||
| def add_binary_data(binary_data): | ||||
|     """ | ||||
|     接收单张图片的二进制数据、提取特征并保存 | ||||
|  | ||||
|     参数: | ||||
|         binary_data: 图片的二进制数据(bytes类型) | ||||
|  | ||||
|     返回: | ||||
|         成功提取特征时返回 (True, 特征值numpy数组) | ||||
|         失败时返回 (False, None) | ||||
|     返回:(True, 特征值numpy数组) 或 (False, 错误信息字符串) | ||||
|     """ | ||||
|     global _insightface_app, _feature_list | ||||
|  | ||||
|     # 1. 先检查引擎是否初始化成功 | ||||
|     if not _insightface_app: | ||||
|         print("引擎未初始化、无法处理") | ||||
|         return False, None | ||||
|         init_result = init_insightface()  # 尝试重新初始化 | ||||
|         if not init_result: | ||||
|             error_msg = "InsightFace引擎未初始化,无法检测人脸" | ||||
|             logger.error(error_msg) | ||||
|             return False, error_msg | ||||
|  | ||||
|     try: | ||||
|         # 直接处理二进制数据: 转换为图像格式 | ||||
|         img = Image.open(BytesIO(binary_data)) | ||||
|         frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | ||||
|         # 2. 验证二进制数据有效性 | ||||
|         if len(binary_data) < 1024:  # 过滤过小的无效图片(小于1KB) | ||||
|             error_msg = f"图片过小({len(binary_data)}字节),可能不是有效图片" | ||||
|             logger.warning(error_msg) | ||||
|             return False, error_msg | ||||
|  | ||||
|         # 提取特征 | ||||
|         # 3. 二进制数据转CV2格式(关键步骤,避免通道错误) | ||||
|         try: | ||||
|             img = Image.open(BytesIO(binary_data)).convert("RGB")  # 强制转RGB | ||||
|             frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)  # InsightFace需要BGR格式 | ||||
|         except Exception as e: | ||||
|             error_msg = f"图片格式转换失败:{str(e)}" | ||||
|             logger.error(error_msg, exc_info=True) | ||||
|             return False, error_msg | ||||
|  | ||||
|         # 4. 检查图片尺寸(避免极端尺寸导致检测失败) | ||||
|         height, width = frame.shape[:2] | ||||
|         if height < 64 or width < 64:  # 人脸检测最小建议尺寸 | ||||
|             error_msg = f"图片尺寸过小({width}x{height}),需至少64x64像素" | ||||
|             logger.warning(error_msg) | ||||
|             return False, error_msg | ||||
|  | ||||
|         # 5. 调用InsightFace检测人脸 | ||||
|         logger.info(f"开始检测人脸(图片尺寸:{width}x{height},格式:BGR)") | ||||
|         faces = _insightface_app.get(frame) | ||||
|         if faces: | ||||
|             # 获取当前提取的特征值 | ||||
|             current_feature = faces[0].embedding | ||||
|             # 添加到特征列表 | ||||
|             _feature_list.append(current_feature) | ||||
|             print(f"已累计 {len(_feature_list)} 个特征") | ||||
|             # 返回成功标志和当前特征值 | ||||
|             return True, current_feature | ||||
|         else: | ||||
|             print("二进制数据中未检测到人脸") | ||||
|             return False, None | ||||
|  | ||||
|         if not faces: | ||||
|             error_msg = "未检测到人脸(请确保图片包含清晰正面人脸,无遮挡、不模糊)" | ||||
|             logger.warning(error_msg) | ||||
|             return False, error_msg | ||||
|  | ||||
|         # 6. 提取特征并保存 | ||||
|         current_feature = faces[0].embedding | ||||
|         _feature_list.append(current_feature) | ||||
|         logger.info(f"人脸检测成功,提取特征值(维度:{current_feature.shape[0]}),累计特征数:{len(_feature_list)}") | ||||
|         return True, current_feature | ||||
|  | ||||
|     except Exception as e: | ||||
|         print(f"处理二进制数据出错: {e}") | ||||
|         return False, None | ||||
|         error_msg = f"处理图片时发生异常:{str(e)}" | ||||
|         logger.error(error_msg, exc_info=True) | ||||
|         return False, error_msg | ||||
|  | ||||
|  | ||||
| # 以下函数保持不变(get_average_feature/clear_features/get_feature_list) | ||||
| def get_average_feature(features=None): | ||||
|     """ | ||||
|     计算多个特征向量的平均值 | ||||
|  | ||||
|     参数: | ||||
|         features: 可选、特征值列表。如果未提供、则使用全局存储的_feature_list | ||||
|                   每个元素可以是字符串格式或numpy数组 | ||||
|  | ||||
|     返回: | ||||
|         单一平均特征向量的numpy数组、若无可计算数据则返回None | ||||
|     """ | ||||
|     global _feature_list | ||||
|  | ||||
|     # 如果未提供features参数、则使用全局特征列表 | ||||
|     if features is None: | ||||
|         features = _feature_list | ||||
|  | ||||
|     try: | ||||
|         # 验证输入是否为列表且不为空 | ||||
|         if features is None: | ||||
|             features = _feature_list | ||||
|         if not isinstance(features, list) or len(features) == 0: | ||||
|             print("输入必须是包含至少一个特征值的列表") | ||||
|             logger.warning("输入必须是包含至少一个特征值的列表") | ||||
|             return None | ||||
|  | ||||
|         # 处理每个特征值 | ||||
|         processed_features = [] | ||||
|         for i, embedding in enumerate(features): | ||||
|             try: | ||||
|                 if isinstance(embedding, str): | ||||
|                     # 处理包含括号和逗号的字符串格式 | ||||
|                     embedding_str = embedding.replace('[', '').replace(']', '').replace(',', ' ').strip() | ||||
|                     embedding_list = [float(num) for num in embedding_str.split() if num.strip()] | ||||
|                     embedding_np = np.array(embedding_list, dtype=np.float32) | ||||
|                 else: | ||||
|                     embedding_np = np.array(embedding, dtype=np.float32) | ||||
|  | ||||
|                 # 验证特征值格式 | ||||
|                 if len(embedding_np.shape) == 1: | ||||
|                     processed_features.append(embedding_np) | ||||
|                     print(f"已添加第 {i + 1} 个特征值用于计算平均值") | ||||
|                     logger.info(f"已添加第 {i + 1} 个特征值用于计算平均值") | ||||
|                 else: | ||||
|                     print(f"跳过第 {i + 1} 个特征值、不是一维数组") | ||||
|  | ||||
|                     logger.warning(f"跳过第 {i + 1} 个特征值:不是一维数组") | ||||
|             except Exception as e: | ||||
|                 print(f"处理第 {i + 1} 个特征值时出错: {e}") | ||||
|                 logger.error(f"处理第 {i + 1} 个特征值时出错:{str(e)}") | ||||
|  | ||||
|         # 确保有有效的特征值 | ||||
|         if not processed_features: | ||||
|             print("没有有效的特征值用于计算平均值") | ||||
|             logger.warning("没有有效的特征值用于计算平均值") | ||||
|             return None | ||||
|  | ||||
|         # 检查所有特征向量维度是否相同 | ||||
|         dims = {feat.shape[0] for feat in processed_features} | ||||
|         if len(dims) > 1: | ||||
|             print(f"特征值维度不一致、无法计算平均值。检测到的维度: {dims}") | ||||
|             logger.error(f"特征值维度不一致:{dims},无法计算平均值") | ||||
|             return None | ||||
|  | ||||
|         # 计算平均值 | ||||
|         avg_feature = np.mean(processed_features, axis=0) | ||||
|         print(f"成功计算 {len(processed_features)} 个特征值的平均特征向量、维度: {avg_feature.shape[0]}") | ||||
|  | ||||
|         logger.info(f"计算成功:{len(processed_features)} 个特征值的平均向量(维度:{avg_feature.shape[0]})") | ||||
|         return avg_feature | ||||
|  | ||||
|     except Exception as e: | ||||
|         print(f"计算平均特征值时出错: {e}") | ||||
|         logger.error(f"计算平均特征值出错:{str(e)}", exc_info=True) | ||||
|         return None | ||||
|  | ||||
|  | ||||
| def clear_features(): | ||||
|     """清空已存储的特征数据""" | ||||
|     global _feature_list | ||||
|     _feature_list = [] | ||||
|     print("已清空所有特征数据") | ||||
|     logger.info("已清空所有特征数据") | ||||
|  | ||||
|  | ||||
| def get_feature_list(): | ||||
|     """获取当前存储的特征列表""" | ||||
|     global _feature_list | ||||
|     return _feature_list.copy()  # 返回副本防止外部直接修改 | ||||
|     logger.info(f"当前特征列表长度:{len(_feature_list)}") | ||||
|     return _feature_list.copy() | ||||
		Reference in New Issue
	
	Block a user