This commit is contained in:
2025-09-03 14:38:42 +08:00
parent eb5cf715ec
commit b7773f5f00
19 changed files with 546 additions and 168 deletions

View File

@ -0,0 +1,133 @@
import cv2
from logger_config import logger
from ocr_violation_detector import OCRViolationDetector
from yolo_violation_detector import ViolationDetector as YoloViolationDetector
from face_recognizer import FaceRecognizer
class MultiModelViolationDetector:
"""
多模型违规检测封装类串行调用OCR、人脸识别和YOLO模型调整为YOLO最后检测任一模型检测到违规即返回结果
"""
def __init__(self,
forbidden_words_path: str,
ocr_config_path: str, # 新增OCR配置文件路径参数
yolo_model_path: str,
known_faces_dir: str,
ocr_confidence_threshold: float = 0.5):
"""
初始化所有检测模型
Args:
forbidden_words_path: 违禁词文件路径
ocr_config_path: OCR配置文件1.yaml路径
yolo_model_path: YOLO模型文件路径
known_faces_dir: 已知人脸目录路径
ocr_confidence_threshold: OCR置信度阈值
"""
# 初始化OCR检测器传入配置文件路径
self.ocr_detector = OCRViolationDetector(
forbidden_words_path=forbidden_words_path,
ocr_config_path=ocr_config_path, # 传递配置文件路径
ocr_confidence_threshold=ocr_confidence_threshold
)
# 初始化人脸识别器
self.face_recognizer = FaceRecognizer(
known_faces_dir=known_faces_dir
)
# 初始化YOLO检测器调整为最后初始化
self.yolo_detector = YoloViolationDetector(
model_path=yolo_model_path
)
logger.info("多模型违规检测器初始化完成")
def detect_violations(self, frame):
"""
串行调用三个检测模型OCR → 人脸识别 → YOLO任一检测到违规即返回结果
Args:
frame: 输入视频帧 (NumPy数组, BGR格式)
Returns:
tuple: (是否有违规, 违规类型, 违规详情)
违规类型: 'ocr' | 'yolo' | 'face' | None
违规详情: 对应模型的检测结果
"""
# 1. 首先进行OCR违禁词检测
try:
ocr_has_violation, ocr_words, ocr_confs = self.ocr_detector.detect(frame)
if ocr_has_violation:
details = {
"words": ocr_words,
"confidences": ocr_confs
}
logger.warning(f"OCR检测到违禁内容: {details}")
return (True, "ocr", details)
except Exception as e:
logger.error(f"OCR检测出错: {str(e)}", exc_info=True)
# 2. 接着进行人脸识别检测
try:
face_has_violation, face_name, face_similarity = self.face_recognizer.recognize(frame)
if face_has_violation:
details = {
"name": face_name,
"similarity": face_similarity
}
logger.warning(f"人脸识别到违规人员: {details}")
return (True, "face", details)
except Exception as e:
logger.error(f"人脸识别出错: {str(e)}", exc_info=True)
# 3. 最后进行YOLO目标检测调整为最后检测
try:
yolo_results = self.yolo_detector.detect(frame)
# 检查是否有检测结果(根据实际业务定义何为违规目标)
if len(yolo_results.boxes) > 0:
# 提取检测到的目标信息
details = {
"classes": yolo_results.names,
"boxes": yolo_results.boxes.xyxy.tolist(), # 边界框坐标
"confidences": yolo_results.boxes.conf.tolist(), # 置信度
"class_ids": yolo_results.boxes.cls.tolist() # 类别ID
}
logger.warning(f"YOLO检测到违规目标: {details}")
return (True, "yolo", details)
except Exception as e:
logger.error(f"YOLO检测出错: {str(e)}", exc_info=True)
# 所有检测均未发现违规
return (False, None, None)
# # 使用示例
# if __name__ == "__main__":
# # 配置文件路径(根据实际情况修改)
# FORBIDDEN_WORDS_PATH = r"D:\Git\bin\video\ocr\forbidden_words.txt"
# OCR_CONFIG_PATH = r"D:\Git\bin\video\ocr\config\1.yaml" # 新增OCR配置文件路径
# YOLO_MODEL_PATH = r"D:\Git\bin\video\ocr\models\best.pt"
# KNOWN_FACES_DIR = r"D:\Git\bin\video\ocr\known_faces"
#
# # 初始化多模型检测器
# detector = MultiModelViolationDetector(
# forbidden_words_path=FORBIDDEN_WORDS_PATH,
# ocr_config_path=OCR_CONFIG_PATH, # 传入OCR配置文件路径
# yolo_model_path=YOLO_MODEL_PATH,
# known_faces_dir=KNOWN_FACES_DIR,
# ocr_confidence_threshold=0.5
# )
#
# # 读取测试图像(可替换为视频帧读取逻辑)
# test_image_path = r"D:\Git\bin\video\ocr\images\img.png"
# frame = cv2.imread(test_image_path)
#
# if frame is not None:
# has_violation, violation_type, details = detector.detect_violations(frame)
# if has_violation:
# print(f"检测到违规 - 类型: {violation_type}, 详情: {details}")
# else:
# print("未检测到任何违规内容")
# else:
# print(f"无法读取测试图像: {test_image_path}")